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Abstract

Mapping of geological variables in the Croatian part of the Pannonian Basin System (CPBS) is mostly based 
on small input datasets. In the case of the analyzed hydrocarbon field "B", reservoir "K", due to the complex 
geological structure and pronounced tectonics, the interpretations are restricted on several blocks, where each 
has very limited dataset. The porosity (19 data) and permeability (18 data) variables were analyzed. The applied 
interpolation methods are the Inverse Distance Weighting (IDW) and the Moving Average (MA). They were 
compared and analyzed by visual inspection of the obtained maps, comparison of mathematical background and 
by calculation of cross-validation (CV). The cross-validation value for the porosity of the "K" reservoir in the case 
of IDW application is 0.0011, and in the case of MA 0.0010; while in the case of permeability the IDW is 480.84, 
and in the case of MA 1346.41. According to the visual review of maps, the values of descriptive statistics of 
estimated values and the results of cross-validation, the IDW method is recommended for mapping the porosity 
and permeability of reservoirs blocks in the Sava Depression.

Izvleček

Kartiranje geoloških spremenljivk v hrvaškem delu Panonskega bazena temelji večinoma na majhnih vhodnih 
podatkovnih nizih. V primeru preučevanega polja ogljikovodikov »B«, rezervoarja »K« je zaradi kompleksne 
geološke zgradbe in močno izražene tektonike, interpretacija omejena na nekaj blokov, od katerih ima vsak zelo 
omejen nabor podatkov. Analizirane spremenljivke so bile poroznost (19 podatkov) in prepustnost (18 podatkov). 
Kot interpolacijski metodi sta bili uporabljeni metoda inverzne utežene razdalje (IUR) in metoda drsečega 
povprečja (DP). Metodi smo primerjali in analizirali s pomočjo vizualnega pregleda dobljenih kart, primerjavo 
matematičnega ozadja in z izračunom navzkrižne validacije. Vrednost navzkrižne validacije za poroznost 
rezervoarja »K« pri uporabi IDW je 0,0011, v primeru uporabe DP pa 0,0010. Vrednost navzkrižne validacije v 
primeru prepustnosti pa je bila pri uporabi IDW 480,84 in pri uporabi DP 1346,41. Glede na vizualni pregled kart, 
vrednosti opisne statistike ocenjenih vrednosti in rezultate navzkrižne validacije, se je metoda IDW izkazala za 
priporočljivo metodo pri kartiranju poroznosti in prepustnosti rezervoarskih blokov v Savski depresiji.
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Introduction

Complex geological structures result in a rel-
atively small volumes and consequently small 
datasets. The tectonics causes the fragmentation 
in several block, often separate hydrodynamic 
units, what negatively affected production. In 
such complex conditions, it is necessary to set up 
a reliable spatial model of selected variables. Any 

successful application of the recommended inter-
polation method is always welcome because can 
be repeated in similar geological environments 
as the best approach. Here are analyzed the po-
rosity and permeability of the Neogene reservoir 
“K” using Moving Average (MA) and Inverse 
Distance Weighting (IDW) methods. 
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The MA method was applied in different re-
search areas: economics (Fan & Wang, 2020; Rau-
dys & Pabarškaitė, 2018), food industry (Kolko-
va, 2018), medicine (Mustapa et al., 2019), geology 
(Balić et al., 2008), environment protection (Ku-
mar et al., 2020), agriculture (Hatchett et al., 
2009), transportation (Adeniran et al., 2018; Len-
kutis et. al., 2021), energy (Alsharif et al., 2019; 
Xin et al., 2020) etc. 

The IDW method is also widely used in various 
research areas (Achilleos, 2011; Al-Hassan & Ad-
jei, 2015; Moeletsi et al., 2016; Tunçay et al., 2016; 
Ikechukwu et al., 2017; Maleika, 2020; Liu et al., 
2021). In petroleum geology, IDW is used to map a 
small set of geological variables in the area of the 
Croatian Pannonian Basin System (CPBS), which 
has proven to be a reliable interpolation method 
(Ivšinović, 2018a; Malvić et al., 2019; Malvić et al., 
2020; Ivšinović & Malvić, 2020). Also, this could 
be often applied method in mapping of hydrocar-
bon reservoirs worldwide (Wenli et al., 2021; Liu 
et al., 2020; Otchere et al., 2021) or subsurface re-
source in general (Busygin et al., 2019).

The paper analyzes the possibility of apply-
ing the MA on particular subsurface structure 
in the CPBS, the reservoir “K” of the field “B” 
located in the western part of the Sava Depres-
sion (Fig. 1). The analyzed input data set is less 
than 20 points, which according to the classifica-
tion (Malvić et al., 2019) belongs to a small data-
set. The mapping can be also done with different 
hybrid algorithms, no using pure interpolation, 
but connecting points from the very dense seis-
mic, gravimetric or similar grids (e.g., Vrdoljak et 
al., 2021; Lemenkova, 2021). As quality check the 
MA results are compared with the IDW method, 
which is previously proven as very reliable map-
ping method in the research area (Malvić et al., 
2019; Ivšinović & Malvić, 2020). 

This research is continuation of analyses of 
different mathematical interpolation algorithms 
application in the Miocene reservoirs of the CPBS. 
This task is important, not only for better know-
ing of the geological subsurface of this part of the 
PBS, but also because such algorithm is mostly 
applied in hydrocarbon reservoirs, still in pro-
duction, and results have also economic value. The 
testing of different mathematical interpolation 
algorithms extensively started in this part more 
than decade ago (e.g., Balić, et al., 2008; Malvić, 
2008), where some of the knowing algorithms had 
been compared regarding their efficiency in map-
ping of geological variables collected in Miocene 
of the CPBS. So, Balić et al., (2008) compared also 
in the Sava Depression, in the Kloštar Field, four 

interpolations, namely: Inverse Distance Weight-
ing, Nearest Neighborhood, Moving Average and 
Kriging, using 20 porosity values from Upper 
Miocene reservoir. Interestingly, cross validation/
mean square errors formula resulted in very sim-
ilar values, orderly: Kriging 366.93, Moving Av-
erage 369.26, Inverse Distance Weighting 371.97, 
Nearest Neighborhood 389.00. It was concluded 
that limited dataset influenced variogram model 
as well as successfulness of exact interpolators 
like (Ordinary Kriging or IDW, especially be-
cause distribution could not be concluded. Au-
thors pointed out that calculation of residual map 
can help in the interpretation of zones with higher 
uncertainty. Simultaneously, Malvić (2008) per-
formed comparison between three geostatistical 
approaches – Kriging, CoKriging and stochasti-
cal simulation (i.e., deterministic vs. stochastic) 
for datasets taken in the Drava Depression (also 
in the CPBS). The analysis was done with only 
14 data points, so the application of geostatistics 
strongly depended on assumption of normal dis-
tribution (the 2nd order stationarity assumption for 
Kriging and related methods). The simulations are 
described as the most descriptive approach, where 
zones of errors are the easiest recognizable.

In analysis presented here, the input datasets 
are not characterized with normal distribution 
as well as the entire dataset can be set up in only 
three classes, so distribution cannot be examined 
with any statistical formal test for normality like 
Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors 
and Anderson-Darling (Razali & Wah, 2011). To 
bypass the normality condition, we selected two 
methods where such distribution is not strong 
condition, namely Inverse Distance Weighting 
and Moving Average, to improve conclusions ob-
tained in earlier publications, especially in (e.g., 
Balić et al., 2008).

Geological settings of analyzed area

Analyzed oil reservoir is part of the typical 
hydrocarbon field in the CPBS. The geographi-
cal position of the analyzed field “B” is shown in 
Figure 1.

The reservoir is composed of medium to fine-
grained sandstone, altered with marls. The age 
is Upper Miocene. A typical geological column of 
the western part of the Sava Depression is shown 
in Figure 2.

The reservoir had been formed by the depo-
sition of turbidities originating from the eastern 
part of the Alps. A schematic representation of the 
sedimentary environment during the Upper Pan-
nonian and Lower Pontian is shown in Figure 3.
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Fig. 2. Typical geological column of the Sava Depression (e.g., Novak Zelenika, 2013; Novak Zelenika et al., 2018).
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Fig. 3. Sedimentary environment during the Upper Pannonian and Lower Pontian western part of the Sava Depression 
(Ivšinović et al., 2021).
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Reservoir hydrodynamics is defined by faults, 
which created several blocks with different per-
meabilities. In the beginning the contact oil-wa-
ter was unique for entire reservoir, i.e., reservoir 
was single hydrodynamic unit. However, after 
some recovery period, parts are characterized 
with larger permeability caused that that fluids 
faster moving upward as well as contact, and 
consequently larger portion of water in produced 
fluid, until the production was not ceased. The 
structural map of the analyzed deposit “K” of the 
field “B” is shown in Figure 4. The reservoir is 
classified as layer type or with structural-strati-
graphic trap.

Simultaneously, reservoir pressure was 
dropped, but also minor communication of fluids 
had happened through fault zones. 

Methodology 

The applied interpolations were Moving Aver-
age (MA), and Inverse Distance Weighting (IDW). 
Their results had been compared visually, nu-
merically and theoretically.

Moving Average (MA)

The MA method (Eq. 1) assigns values to spa-
tial points by determining the mean value of 
measured data located within a particular area 
around the grid node (un-known value that is es-
timated by MA). The minimum (sometimes also 
maximum) amount of analyzed data should be 
defined. The value calculated in each grid node 
is equal to the arithmetic mean of the measured 
data located within the defined range of spatial 
dependence. The mathematical equation for cal-
culating the moving average value is (e.g., John-
ston et al., 1999; Ekhosuehi & Omorogbe Dick-
son, 2016; Rusdiana et al., 2020):

 
       (1)
 

where: yi,j-interpolated value of moving average 
method; n- number of data set; xi,j-k- input data.

Inverse Distance Weighting (IDW)

The IDW method is based on the distance 
(ponder with exponent, mostly second power) be-
tween the measured data and the location where 
unknown value is estimated. Such values are in 
grid nodes. The measured data included in calcu-
lation are values inside the searching radius/ra-
dii, i.e. inside circle/ellipsoid of spatial depend-
ence. The mathematical expression for inverse 
distance estimation (e.g., Setianto & Triandini, 
2013; Ivšinović, 2018b) is:

    
   

    (2) 
     
   

    
where: ziu-estimated value; di-distance to “i-th” 
location; p-power of distance; zi-measured values 
at “i-th” location.

The result of IDW interpolation depends on 
the value of the exponent p, which is obtained ex-
perimentally and has a different value in differ-
ent fields of science. In subsurface mapping, for 
the CPBS, the proposed value exponent “p” is 2.

Cross-validation (CV)

Cross-validation (CV) or out-of-sample test-
ing is a method of assessing the quality of a map 
obtained by implemented an interpolation meth-
od. It is based on the re-placement of the any 
measured (original) data(s) from an entire meas-
ured dataset and is replaced by a new value(s) 
estimating from the existing data set. In geolo-
gy the most often is applied “p=1”, i.e., leaving-
one-out CV. Differences between measured and 
estimated value on the same location is error. The 
very often such error are calculated using mean 
square error algorithm (MSE). The mathematical 
formula for calculating MSE is (e.g., Malvić & 
Novak Zelenika, 2013):

  
  (3) 

 
where: MSE- mean square error; measured- 
known value at location “i”; estimated- unknown 
value (deleted) at location “i”; n - number of lo-
cations.

The quality of the map obtained by the inter-
polation method is based on the numerical value 
of the MSE, the lower the value of the MSE the 
better the applied interpolation method.

Mathematical differences in MA and IDW and 
reflections of searching radius

Basically, both methods are considered as 
mathematically simpler interpolation methods, 
that highly depend on number of input data. 
However, both use so called searching radius 
or radii. If anisotropy could be recognized and 
quantitatively described, two axes/ellipsoid of 
dependency are defined, if not – the circle out-
lined area with hard data included in calculation. 
The small datasets (n<20) hardly allow unambig-
uous recognition of anisotropy, even with lot of 
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qualitative geological data, so the most often MA 
or IDW works with searching radius or circle (of 
spatial dependance), without any further sepa-
ration of circle in quadrants or octants, because 
most of them would be without single hard value, 
i.e., would be empty.

Definition of searching radius is much more 
important in MA then IDW, because MA does not 
honor distances among unknown value/location 
and known, measured, hard data. However, one 
of the geological axioms is that if what two meas-
urements are more distant in space, the differ-
ence must be larger. It is valid for any geological 
variable, like thickness, granulometry, porosity, 
permeability, depths etc., simply because any ge-
ological value is result of particular geological 
environment, limited in space and time. Conse-
quently, the equally weighting of each measured 
value (MA) inside searching radius surely does 
not honor such rule (Equation 1), especially be-
cause area of spatial dependance has to cover 
large part or entire analyzed area to include at 
least one measured value.

Oppositely, the IDW honor the distances 
among estimated and measured values, equally 
for any direction (Equation 2). Even for single 
reservoir this could be crucial advantage, be-
cause reservoir’s lithofacies is not homogeneous 
and will gradually change from the center of 
structure, especially if depocenter remained in 
the current structure top, toward the reservoir 

margins. This presumption has been tested in 
this work and elaborated with results, discussion 
and conclusions.

Results and discussion

The analyzed variables were obtained from 
laboratory measurements of well cores and log-
ging measurements. Data from reservoir “K” are 
shown in Figure 5.

The analyzed porosity (19 data) and permea-
bility (18 data) belong to a small datasets. They 
are characterized by intervallic grouped data - 
in the case of permeability two, and in the case 
of porosity three groups, which is results of an-
alytical approximation and reservoir heteroge-
neity. However, the problem is what the formal 
normality tests cannot be applied, and empirical 
Q-Q plot cannot be calculated. It is why those two 
interpolation algorithms, where normal distribu-
tion is not strong condition for their application, 
had been selected. 

Based on selected area and structural axes, 
the searching radius was in both algorithms set 
on 628 m. It is done using the “rule of the thumb” 
that if data do not allow create reliable spatial 
model, omnidirectional or anisotropic, for search-
ing radius is recommended to use structural or 
depositional axes and their ration (if exists). So, 
628 m is about half of the quadrat used to border 
researched area and is used for omnidirection-
al/circle searching radius. The research area is 

Well Surface X Surface Y Porosity (part of units)

J-101 6421096 5028877 0.217

J-120 6420658 5029068 0.272

J-161 6420957 5028870 0.217

J-162 6421034 5028593 0.217

J-167 6420529 5028674 0.217

J-168 6420699 5028475 0.315

J-169 6420724 5028825 0.217

J-170 6420349 5028926 0.223

J-174 6421298 5028863 0.217

J-175 6420475 5029136 0.223

J-158 6420303 5028910 0.223

J-171 6420576 5028970 0.223

J-172 6420928 5029147 0.223

J-102 6421208 5028926 0.217

J-148 6421126 5028437 0.217

J-149 6420959 5028501 0.217

J-166 6420771 5028650 0.217

J-25 6420546 5028460 0.315

J-173 6420539 5028382 0.217

Fig. 5. Raw data set of po-
rosity and permeability of 
reservoir “K” (Malvić et al., 
2020).
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42.3 km2. Obtained permeability and porosity in-
terpolations by IDW and MA methods are shown 
in Figure 6, while the results of cross-validation 
and descriptive statistics are shown in Table 1.

The results given on Figure 6 are influenced 
with, and reflected in, the complexity of the geo-
logical structure, and especially depositional en-
vironments that are responsible for clastic types 
and their petrophysics. Here is also included the 
problem of measurement errors and consequently 
fitting of measured values into classes. It is well 
known that laboratory and logging results can 
differ, even for an order of magnitude, so some-
times they are not directly comparable or have 
to be used jointly only with caution. The step of 

caution had been selection of values in group, de-
creasing influence of measurement error, but also 
decreasing data spectrum, what made interpola-
tion significantly less representative, especially 
on smaller scales of changes.

The IDW porosity map (Fig. 6, a) shown many 
outliners of individual points resulted in so-
called bull-eyes and even on NW part butterfly 
effects. That was expected due to the distances 
of measured data, applied power exponent and 
values of minimum and maximum. According to 
Table 1 IDW porosity values have standard devi-
ation of 0.016 and MSE 0.0011. 

The MA porosity map (Fig. 6, b) is more uni-
formly shaped at first glance. No butterfly or bull-

Fig. 6. Maps of reservoir “K” obtained by interpolation methods: (a) Porosity (IDW); (b) Porosity (MA); (c) Permeability 
(IDW); (d) Permeability (MA).

Table 1. Cross-validation values and descriptive statistics of estimated values for IDW and MA methods for geological vari-
ables porosity and permeability of reservoir “K”.

Variable Method Cross-validation 
(MSE) Min Max Mean Standard deviation

Porosity IDW 0.0011 0.219 0.293 0.232 0.016

Porosity MA 0.0010 0.217 0.243 0.231 0.006

Permeability IDW 480.84 36.33 115.97 90.97 28.97

Permeability MA 1346.41 63.95 121.20 93.06 13.34
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eyes are pronounced, which is understandable 
because it is a local calculation of the mean val-
ue around the estimated data, i.e., in the search-
ing radius. So, if averaging is dominant, and to-
tal number of data is small, the consequence is 
that many estimations will be averaged with the 
same values. Furthermore, it means that complex 
shapes like butterfly of bull-eye effects will not 
be developed. Moreover, the transition area be-
tween the data is not emphasized, but island-like 
irregularities are formed in this area (between 
wells J-170 and J-175 or J-162 and J-174. Due to 
the data averaging, the usual butterfly or bull-
eyes effects cannot occur, as in the IDW method. 
That is clearly seen by the circular appearance of 
the “green” surface in the center of Figures 6, b. 
Comparing the data of descriptive statistics (Ta-
ble 1) the values of standard deviation (0.006) and 
MSE (0.0010) are slightly smaller than in the IDW.

The IDW permeability map (Fig. 6, c) empha-
sized the butterfly or bull-eyes effects. In the 
northwestern part of the reservoir, it is less pro-
nounced, while in the southeastern more. Fig. 6, 
c clearly shows the zone of abrupt changes be-
tween wells J-169 and J-171 or J-167 and J-158. 
The transition zone between the zone of higher 
reservoir permeability and lower reservoir per-
meability can be follow along entire map and 
correspond to fault zone shown on structural 
map (Fig. 4). The data of the descriptive statistics 
from Table 1 showed relatively small standard 
deviation (28.97) and high MSE (480.84).

On the MA permeability map (Fig. 6, d) is 
clearly seen no uniform transition zone between 
the different permeability values. This can be 
seen in Figure 6, d through the peninsula-like 
shape between wells J-166 and J-167 or J-101 
and J-102. The values are averaged as seen from 
the descriptive statistics in Table 1 and although 
standard deviation is smaller than by IDW (13.34) 
the MSE is extremely high (1346.41). The differ-
ence between the original and estimated data 
(MSE) is twice as large in the case of the min val-
ues of the set. This can be seen from the interpo-
lated map (Fig. 6, d) that the permeability values 
of wells J-167 and J-169 differ significantly, and 
the measured values are the same (121.2·10-9 m2). 
Regarding large difference between MSE(IDW) 
and MSE (MA), here 480.84 vs. 1346.41, the range 
of permeability is much higher than of porosity, 
so consequently any estimation will varies sig-
nificantly depending on applied mathematical al-
gorithm, like it is shown in results.

As can be seen from Table 1, the cross-vali-
dation/MSE value has a lower value of MA than 

IDW in the case of porosity, while in the case of 
throughput it is the reverse case. The difference 
in cross-validation in bandwidth between the 
MA and IDW methods is 0.0001. This difference 
can be ignored due to the other results of the de-
scriptive statistics in Table 1. It can be observed 
that the coverage of the estimated values in the 
IDW method is much more realistic than in the 
case of the MA method. In such cases, the rule of 
accepting the interpolation method to the amount 
of the lower CV value can be deviated from. Most 
importantly, the estimated values obtained by 
interpolation methods must be an approximate 
reflection of the measured data.

Conclusions

Here is solved one local problem of selection 
the appropriate interpolation algorithm for small 
datasets of petrophysics measured in the sub-
surface Miocene hydrocarbon reservoirs in the 
Northern Croatia (CPBS). So, the results are of 
interest for researchers engaged in the studying 
of such reservoirs in the Sava Depression as well 
as in all other depressions in the CPBS. Howev-
er, all researching that included interpolation 
of small geological datasets (n<=20 points) could 
find those achievements and conclusions worth of 
testing in their own explorations, whatever the 
data are collected from surface or subsurface. 
The specific outcomes obtained with this analy-
sis are:
•  Visual inspection of the obtained interpolat-
ed maps revealed that the maps obtained by the 
IDW method are more acceptable for interpre-
tation of reservoir petrophysics compared to the 
MA method.
•  The permeability map of the “K” reservoir ob-
tained by the MA method can be described with 
mosaic effect, with sharply wavy, peninsular, 
and island shapes, which is not an unusual case 
in mapping of small datasets, but cannot be in-
terpreted with sense. This is characterized by a 
high value of cross-validation.
•  Descriptive statistics, histograms and maps 
showed that the values obtained by the IDW 
method are closer to the ranges of original data-
sets. The differences between IDW and MA are 
about 25 % for porosity and more than 200 % for 
permeability.
•  The calculated cross-validation/MSE for the 
MA method in the case of porosity is 0.0010, and 
permeability is 1346.41 for reservoir “K”. In the 
case of the IDW method the MSE for porosity is 
0.0011, while for permeability 480.84. The dif-
ference between the MSE values for porosity can 
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be neglected with respect to the results of de-
scriptive statistics and visual inspection of the 
obtained maps. 
•  This researching showed that mapping the 
porosity and permeability of Neogene reservoir 
in the CPBS highly depends on the experience 
of the interpreter in the application of differ-
ent mathematical methods and geological un-
der-standing of spatial distribution of selected 
variables. The MA showed one large disadvan-
tages – in the case of small datasets there is not 
enough measured values inside searching ra-
dius for reliable calculation of average. So, the 
“distance weighting” approach of the IDW is 
far better approach for mapping of reservoirs in 
such case.
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