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Abstract 

From the national digital elevation model DMV 5 of the Western Karavanke longitudinal profiles of fifty- 
three torrents were extracted. Longitudinal profiles of torrential Channels in study area have generally convex 
sections and do not correspond to equilibrium state. In this paper, changes in lithology across faults and other 
potential influences are discussed as possible cause for observed convex longitudinal profiles. Some typical cases 
where it has been found, that convex sections could be result of faults, are graphically showed. Also lithology of 
torrential stream bed could be one of main factors for convexity. This applies in particular if the torrent crosses 
from soft to solid rock. 

Izvleček 

Iz državnega digitalnega modela višin DMV 5 območja Zahodnih Karavank so bili določeni vzdolžni profili 
53 hudourniških strug. Vzdolžni profili hudournikov imajo večinoma odsekoma konveksno obliko in ne ustrezajo 
pogojem ravnovesnega stanja. V članku so kot možni vzroki za konveksnost vzdolžnih profilov obravnavane 
spremembe v litologiji preko prelomov in nekateri drugi potencialni dejavniki. Grafično so prikazani posamezni 
značilni primeri, kjer je bilo ugotovljeno, da so lahko konveksni odseki vzdolžnih profilov hudouniških strug 
posledica prelomov. Prav tako se je ugotovilo, da je lahko litologija podlage dna hudouniške struge eden izmed 
glavnih razlogov za pojavljanje konveksnih odsekov. To velja še posebej za primere, kjer hudournik preide iz 
mehkih v trdne kamnine. 

Introduction 

Longitudinal profiles of torrential Channel 
have been investigated by many authors (Snow & 
Slingerland, 1987; Hantke & Scheidegger, 1999; 
Rädoane et.al., 2003; Goswami et al., 2012). The 
most explored phenomenon related to longitu- 
dinal profiles is their form. Steady-state longi- 
tudinal stream profiles normally have a concave 
shape, whichis not typical for torrential Channels, 
where other shapes are often recognized. Their 
profiles commonly exhibit a variaton of concave, 
convex and flat sections, which are characteris- 
tics of morphologically-active streams with sig- 
nificant erosion activity. 

Extreme phenomenoms like debris flows can 
occur in morphologically-active streams. This 
can result in significant damage to property and 
can threatenlives. Landslides, rockfalls and even 
snow avalanches can be triggered into the stream 
Channel because of steep slopes and steady-state 
form can fail. 

In this paper, we investigated torrents in the 
Western Karavanke on northern slopes of the Up- 
per Sava Valley from the Završnica torrent to the 
East to the Trebiža torrent to the West. Our main 
objective was to define possible reasons for the 
evolution of convexity, based on longitudinal pro- 
file form of torrential streams in the study area. 
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In order to attain this objective, we are taking 
the following steps: (1) to define study area and 
data basis; (2) to characterize the form of the lon- 
gitudinal profiles by using DMV data; (3) to study 
lithological settings and faults. 

Steady-state longitudinal profiles of 
headwater torrents 

The steady-state form of torrential longitudi- 
nal profiles in general has concave shape (slope 
decreases downstream) (Hack, 1957, Rädoane 
et al., 2003, Pazzaglia et al., 1998, Seidl et. al., 
1994). The torrent gradient typically decreases 
in the downstream direction. These character- 
istics are typical for morphologically non-ac- 
tive torrential watercourses, subject to devia- 
tions with respect to the geological structure 
of an area (Hack, 1957). Different empirical 
equations to describe steady-state form were 
developed. For example, Flint (1974) described 
steady-state longitudinal profiles with empiri- 
cal power law: 

S = ksA~e 

Where S is the local Channel slope, A is the 
upstream contributing drainage area, and ks and 
0 are the steepness index and concavity index. 

A characteristic of morphologically active 
torrents are convex longitudinal profiles. Tor- 
rential Channels are generally young morpholog- 
ical formations and rarely have a concave shape 
of their longitudinal profiles. They can be seg- 
mented into concave, convex, and flat sections, 

and they exhibit knickpoints (Fig. 1). The rea- 
son for these features may be tectonic activity, 
erosion processes, or changes in the composition 
of the bedrock. Such features also form where 
a large part of the headwater torrent runs over 
the bedrock, except close to the junction with 
the main stream where it usually flows in its 
own deposits. The cause may also be different 
erosion ability between two torrential streams 
which merge together. The process of establish- 
ing equilibrium in longitudinal profiles in na- 
ture can take up to several million years (Stock 
& Montgomery, 1999). The interpretation of a 
historical development of longitudinal profiles 
of headwater torrential streams is based on the 
understanding of the governing processes under 
which a torrential Channel incises (Wohl, 1998). 
The bedrock and Channel incision are particu- 
larly important because they can regulate how 
fast erosion changes expand along the torrential 
Channel (Tinkler & Wohl, 1998). The grade of al- 
luvial Channels is determined by their hydraulic 
regime, whereas the grade of bedrock Channels 
may be an independent variable, if weathering 
takes over erosion (Howard, 1980; Howard, 1998). 
In bedrock Channels alluvial reaches may occur 
when and if transport capacity reduces due to a 
low Channel grade. 

For upper reaches of torretial Channels, large 
grades and flow intermittency are typical. In 
middle reaches somewhat lower grades and more 
steady flow prevail, whereas in the lower reaches 
an inflection point or a major knickpoint at the 
fan apex can be present. The largest grades can 
also occur in middle or lower reaches at conflu- 

Upstream, lower gradient reach 
Inflection point, major knickpoint 

Minor knickpoints do not 
deviate from overall 
slope-trends of the longitudinal 
profile 

Profile prior to knickpoint 
■propagation driven by base- 
level fall 

  
Minor knickpoint within major knickzone 

Outlet of stream (base-level) 

Fig. 1. Sample of a typical longitudinal profile of morphologically-active torrential Channel (Foster & Kelsey, 2012) 

Stream headwaters 
Headward erosion 
(^knick] ckpoint 
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ences with larger torrential streams; in this čase 
the long-term and more pronounced incision of 
the main torrent prevails. These non-specific 
phenomena may also be affected by other erosion 
processes, e.g. glacial erosion. 

The continuous alternation of concave and 
convex reaches is a sign of an unstable Chan- 
nel with pronounced geomorphological activity 
(Gavrilović, 1972). Torrential tributaries with 
pronounced erosion activity and sediment sup- 
ply can contribute to this Situation. Channels, 
with concave longitudinal profiles and one ma- 
jor knickpoint at confluence with tributary, can 
occur. This is a sign of an active tributary with 
high erosion capacity that contributes to the 
main stream large amounts of sediment (Gavri- 
lović, 1972). However, this dependence is not al- 
ways evident or reliable, as the main stream, due 
to the geological characteristics of the bedrock or 
a local sediment source, can have a convex form. 

Since they are close to their (final) stable 
stage, sediment potential of mature torrents is 
much lower than that of immature torrents. The 
longitudinal profiles of torrential streams usu- 
ally follow the ideal parabolic curve that corre- 
sponds with the terminal grade when a torrent 
does not degrade nor aggrade any more under 
given geological settings in its catchment (Gavri- 
lović, 1972). Even if a torrential stream exhibits 
a steady longitudinal profile, it is stili susceptible 
to change. Landslides, rock falls and even ava- 
lanches can disturb the equilibrium and lead to 
adjustments to a new one. From a longitudinal 
profile of a torrential stream it is also possible 
to predict which reaches could undergo degra- 
dation, and which ones the aggradation of the 
Channel. Of course, this is true for natural (un- 
regulated) torrents. In regulated torrents, equi- 
librium in their longitudinal profiles is reached 
by e.g. transverse structures, such as check dams. 

Study area 

Study area belongs to the Slovenian part of 
Western Karavanke (Fig. 2A). Structurally, they 
are part of the Southern Alps. The mountain 
ränge has a distinct SE-NW orientation, with 
well-expressed and narrow ridge crests (Fig. 
2C). Geological composition of the ränge is rather 
heterogeneous, with occurences of carbonate, 
clastic, volcanoclastic and volcanic rocks of dif- 
ferent ages, and with complex tectonic structure 
(Jurkovšek, 1985, Buser & Cajhen, 1978). For the 

purpose of research, the compiled geological map 
and structural subdivision from Brenćić & Polt- 
nig (2008) was used (Fig. 2B, C). Presently the 
area has a well-distributed network of torrren- 
tial watercourses, most of which are located in 
narrow Valleys. Springs often have character of 
contact karst and emerge at the junction between 
permeable (eg. carbonate rocks) and imperme- 
able rocks (eg. sandstone) (Bunćić, 2014). Activ- 
ity of the Upper Sava Glacier in Quaternary also 
had a large impact on geomorphic characteris- 
tics of the area. The glacier formed the typical 
U-shaped Upper Sava Valley along the southern 
foot of the Western Karavanke ränge. 

Geological background 

Western Karavanke structurally belongs to 
the Southern Alps (Placer, 2008) and are com- 
posed of the following tectonic units (Brenćić 
& Poltnig, 2008, modif. from Jurkovšek, 1986, 
Buser & Cajhen, 1978 and Budković, 1999) (Fig. 
2B): Paleozoic of Carnic Alps, Golica Syncline, 
Košuta Unit, Young Paleozoic of Jesenice Unit, 
Southalpine Triassic Unit. Their boundaries are 
mainly steep transpressive strike-slip faults. Po- 
linski & Eisbacher (1992) investigated the origins 
of deformations and structure of the Karavanke, 
describing them as a consequence of the multi 
-phase oblique convergence. 

The study area is characterizedby the presence 
of wide varieties of lithological units (Fig. 2C) as 
a consequence of their origin in the different pa- 
leogeographical environments during geological 
history (Brenćić & Poltnig, 2008; Brenćić et al., 
1995). The majority of faults are WNW-ESE ori- 
entated with dextral strike-slip displacement in 
the transpressional regime. Subordinately, there 
are also NE-SW directed, left-lateral strike-slip 
faults, and accommodating rotation of blocks be- 
tween main faults. Recent morphology of Kara- 
vanke is a consequence of the on-going tectonic 
movements evidenced by the current seimic ac- 
tivities (Jamšek Rupnik, 2013), active tectonics 
(Polinski & Eisbacher, 1991; Nemes et al., 1997; 
Jamšek Rupnik, 2013; Mihevc et al., 2013) and ac- 
curate GPS measurements (Vrabec et al., 2006). 

The oldest rocks in the research area are 
highly erodible, predominately shales of Hoch- 
wipfel beds (Lower Carboniferous) with subor- 
dinately more resistant limestone lenses. Auernig 
beds (Upper Carboniferous - Lower Permian) are 
simmilar by their lithological composition. Mas- 
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sive Trogkofel limestones (Lower Permian) are 
comparably more resistant then overlying Brec- 
cia of Tarvis and Groden sandstones (Lower and 
Middle Permian, respectively). Belerophon do- 
lomites (Upper Permian) are positioned above. 
Lower Triassic Werfen beds are of mixed clastic 
- carbonate origin, less resistant compared to the 
overlying limestones and dolomites of the Anisian 
Alpine Muschelkalk. In the upper part of the Ani- 
sian and in the Ladinian, again mixed siliciclas- 
tic, volcanoclastic and carbonate rocks prevail, 
followed laterally and upward by more resistant 
Schiern dolomite (Ladinian - Lower Carnian). 
In the Carnian Raibl beds, there again dominate 
more erodible siliciclastic component, followed 
by predominately thin bedded dolomite and lime- 
stone succession (Upper Triassic - Jurassic), ocas- 
sionally also marlstones in Golica syncline. On 
the other hand, the highest peaks of the research 
area are composed of the highly resistant massive 
and thick-bedded Upper Triassic Dachstein lime- 
stones. There are also small patches of the Eocene 
clastites present in the area. Quarternary Sedi- 
ments are represented mainly by moraine, allu- 
vial Sediments and slope debris. 

Generally, the studied torrential areas are 
strongly heterogeneous from the geological point 
of perspective. 

Methodology 

National digital elevation model DMV 5 
(GURS, 2011-2014) was used to calculate the 
longitudinal profiles of the torrential Channels. 
DMV 5 is given as x, y and z coordinates in Slo- 
venian national grid D48/GK and organized in 
a grid cell with spatial resolution of 5 meters. 
DMV 5 was produced in years 2006 and 2007 by 
fusion of the results from stereophotogrammet- 
ric restitution of aerial images and resampling 
of the national digital elevation model DMV 12.5 
(Podobnikar, 2008). Update of DMV 5 was per- 
formed in 2011 within the project of Cyclical Ae- 
rial Survey of Slovenia and ortohophoto produc- 
tion (GURS, 2011-2014). DMV 5 was chosenfor our 
project over the DMV 12.5 because of better spa- 
tial resolution, although some of the past studies 
showed that both elevation models are useless for 
more precise mathematical modelling (e.g. Sodnik 
et al., 2009). Since this paper describes complete 
torrents, from Springs to confluences with larger 
streams, good approximations of the longitudinal 
profiles can be obtained already by using DMV 5 
(Mohorić, 2015). For the quality of the elevation 

model not only the spatial resolution, but also the 
data acquisition, height accuracy and processing 
of the data are important factors. 

Fifty-three torrential Channels situated in 
the Western Karavanke were analysed in the re- 
search. The analysis included the torrents whose 
watershed area exceeded 1.5 km2 and are situ- 
ated between torrents of Trebiža on the west and 
Završnica on the east. 

The torrential streams were obtained within 
ArcGIS mapping platform (ESRI, 2013), the Envi- 
ronmental System Research Institute's Software 
for data analysis in the Geographie Information 
Systems (GIS). Rasterised DMV 5 was used to cal- 
culate the flow direction and flow accumulation. 
Torrential network was produced by thresholding 
the flow accumulation raster as described in Par- 
menter & Melcher (2010). Furthermore, by vec- 
torisation of the torrential network short reaches 
of potential torrential Channels were obtained. 
Reaches that represented individual torrent were 
identified on the topographic map (SINERGISE, 
D.O.O. & MAPYX LIMITED, 2015) and manually 
joined into a Single torrent. In order to calculate 
longitudinal profiles, the torrents' heights were 
interpolated from DMV 5. The whole methodology 
of the longitudinal profiles of torrential Channels 
calculation and analysis is in detail discussed in 
detail in Mohorić (2015). 

Fault network geometry was extracted from 
the geological map of the Karavanke at the scale 
of about 1:110.000 (Brenćić & Poltnig, 2008). For 
areas not covered by this map, data of the Basic 
Geological Map of SFRJ in the scale 1 : 100.000, 
sheets Beijak in Ponteba (Jurkovšek, 1986) and 
Celovec (Klagenfurt) (Buser & Cajhen, 1978), 
were used. Using GIS, we determined the points 
where faults cross torrential streams. 

Results and discussion 

Extracted longitudinal profiles of torrential 
Channels are shown in Figs. 3 to 10. Sites where 
Channels are crossed by transversal faults are 
marked as points and longitudinal faults as point 
clouds. Faults which cross torrential Channels 
under torrential sediment are excluded. Short 
sections of convex shape occur in all analyzed 
stream profiles. Extreme cases, such as Sevnik 
torrent, exhibit almost flat longitudinal pro- 
file. Obviously, analyzed stream profiles are not 
equilibrated. 
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Influence of faults 

In some cases, knickpoint with convex longi- 
tudinal profile of torrential Channel occurs in ar- 
eas of faults. The most significant examples where 
faults are oriented transverse to the direction of 
torrential Channel are Jelenji potok at length 0,7 
km, Hladnik at length 5,9 km and Suhelj at length 
1,95 km (Fig. 3). Such cases may occur when faults 
are oriented transverse to the direction of torren- 
tial Channel and separate tectonic blocks of soft 
rock upstream from more resistant rocks down- 
stream. In this place, it is probably not that impor- 
tant if they are fractured in direction of the slope 
or in opposite direction of slope (on the southern 
parts of Karavanke slopes usually dip steeply to 
the south). Typically, fault zones occur in Strands 
of several parallel faults, with observed zone 
widths ranging from couple of ten meters up to 
300 meters. Principal fault plane usually occurs 
at the contact between rheological more resistant 
and less resistant fault-blocks, whereas the par- 
allel and anastomosing faults (where individual 
fault zones/faults in the fault zone are not parallel 
and can be wrapped, devided and reunited again) 
with smaller displacements are mainly positioned 
in less resistant rocks. 

A significant number of torrential streams at 
least partly run parallel to the deformed zone 
along the fault traces. The influence of longitudi- 
nal faults along torrents on formation of knick- 
points is not observed. In a tectonically deformed 
zone where cataclastic sediments are present, a 
formation of concave, equilibrium profiles is ex- 
pected. Therefore, erosion of torrential streams 
in cataclastic zone happens more easily. How- 
ever, convex sections at some of the samples in 
study area most likely a result of other factors 
(eg. Hladnik at Fig. 3). For example, many stud- 
ies have investigated the influence of tectonics 
on Channel morphology, where Channels steepen 
their longitudinal profiles in association with 
faster uplift (Kirby & Whipple, 2001; Kirby et al., 
2003, Stark, 2006; Dibiase et al., 2010). Moreover, 
all other factors such as neotectonic movements 
and discontinuities caused by the different stages 
in the evolution of the profile, account for devia- 
tions from the general form of the profile. Due to 
lack of data, the tectonic structure of the study 
area is quite uncertain. Thus, the importance of 
tectonic evolution in this study has not been fully 
highlighted. 
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Longitudinal profiles of Strmi graben and Hlandnik torrents with tributaries 
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Fig. 8. Longitudinal profiles of the Strmi graben in Hladnik torrents - with their tributaries. 
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Fig. 9. Longitudinal profiles of the Strug, Smeč and Žakelj torrents - with their tributaries. 
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Longitudinal profiles of Suhelj, Krotnjek, Kravnjak and Trebiža torrents with 

tributaries 
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Fig. 10. Longitudinal profiles of the Suhelj, Krotnjek, Kravnjak and Trebiža torrents - with their tributaries. 
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Fig. 11. Longitudinal profile of Jelenji potok with significant knickpoints at contact of highly erodible and poorly erodible 
material and contrary. 

Impact of lithology on torrential stream bed 

Due to the varying resistance of rocks to ero- 
sion, bedrock lithology presents an important 
factor influencing the stream profile shape. Ad- 
ditionally, when bedrock is impermeable the en- 

hanced surface water runoff will mechanically 
erode soils. Orientation of various tectonic and 
non-tectonic structures may also significantly 
influence the rate of erosion. For example erosion 
tends to be stronger parallel to bedding in sedi- 
mentary rocks (Perron & Royden, 2012). 
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Fig. 12. Convexity and concavity between different erodible rocks, example of Jelenji potok. A - torrential streams flow from 
highly erodable to poorly erodable rocks; B - torrential stream from poorly erodible to highly erodible rocks. 

Engineering geological Classification catego- 
rizes Slovenian rocks into three groups (Ribićić et 
al., 2003). Highly erodible rocks of the first group 
comprise of soils and soft rocks (carbonate clastic 
rocks, marlstone, rocks composed of clay and silt 
fractions). The second group includes moderately 
erodable rocks with a thin weathered cover (clas- 
tic, pyroclastic and metamorphic rocks), whereas 
the third group comprises poorly erodible mas- 
sive carbonates and igneous rocks. In general, 
torrential streams form concave shapes but in 
nature the concave and convex forms often ex- 
change. Frequently the longitudinal profile of 
torrent is transformed at the contact between soft 
and solid rocks or at the contacts between clastic 
rocks and carbonates respectively. It is harder for 
torrents to erode carbonate rocks therefore in the 
case of contact from soft to solid rocks the longi- 
tudinal profile is converted from concave to con- 
vex shape. This can be clearly seen from Fig. 11 
and Fig. 12A where torrential streams flow from 

highly erodable (clastic sediments, fine grained 
clastic rocks, mixed clastic rocks with sandstone 
and breccia) to poorly erodable rocks (massive 
carbonates, thick bedded and massive carbon- 
ates). On the contrary, the longitudinal profiles of 
torrent in the Fig. 12B form concave shape. 

Figure 13 shows the accumulated length 
of headwater torrents per rock erosivity class 
based on Erosion map and lithological properties 
(Ribićić et al., 2003). From the Figure 13 it can 
be seen that the majority (87.4 %) of investigated 
torrential streams in the Western Karavanke are 
cutting into highly erodable rocks (137.54 km), 
whereas the total length of torrents in poorly ero- 
dable rocks is 19.83 km. These results correspond 
to concavity of the longitudinal profiles in more 
easily erodible sedimentary rocks. Moreover, the 
impact of lithological background is reflected a 
great number of torrential streams that were de- 
termined on the research area of 1.5 km2. 

Fig. 13. Cumulative leng- 
th of investigated torrents 
per erosivity class of the 
bedrock 
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Conclusions 

In this paper, fifty-three longitudinal profiles 
of torrential Channels in the Upper Sava Val- 
ley on the slopes of the Western Karavanke are 
discussed. ArcGIS mapping (ESRI, 2013) was 
used to obtain longitudinal sections of torrenti- 
al Channels from DMV 5. In general, accuracy of 
longitudinal profiles provided from DMV 5 does 
not correspond to more detailed mathematical 
modeling, but for describing complete torrents 
(from Springs to confulences with larger streams) 
and for detecting main forms the accuracy of cal- 
culated profiles is sufficient. 

For the Western Karavanke, a rather heteroge- 
nous geological composition and a large number 
of faults are typical. Highly and poorly erodable 
rocks of stream bed often change along torrential 
Channels. Majority of torrential Channels in the 
study area are cutting into highly erodable rocks, 
consequently torrential watercourses are located 
in narrow valeys. Frequently faults occur longi- 
tudinal or transverse to torrential Channel. 

From the research that has been carried out, it 
is possible to conclude that the longitudinal pro- 
files of torrential Channels do not correspond to 
equilibrium longitudinal profile. A lot of convex 
sections are presented. According to the availabi- 
lity of data it was found, that (1) transverse faults 
could be the reason for some knickpoints whi- 
le longitudinal faults provide conditions for the 
formation of concave, equilibrium stream Chan- 
nel, and (2) at the contact between solid and soft 
rocks convex reaches with knickpoints occur. 

Also, other factors could be the reason for con- 
vexity with knickpoints but were not presented 
in this article. Additionaly, the erosion of Qua- 
ternary glaciations of the Upper Sava Glacier co- 
uld have influenced the longitudinal profiles of 
torrential stream Channels. Existing data about 
those glaciations are poor and glaciations were 
consequently not included in this study. Exepti- 
onally, other reasons like the low erosion ability 
of lower order torrential streams, higher erosion 
capacity of the main torrential stream against 
the tributary torrential stream and as well hu- 
man influence could have impact on convex lon- 
gitudinal profiles with knickpoints. Knickpoints 
are the result of local conditions which affected 
formation of torrential Channels and normally do 
not have a Single reason for their formation. 

Authors are aware that present study does not 
reflects the entire "story" of longitudinal profiles 
of torrential Channels in the Western Karavanke 
Mountains. More research that will include de- 
tailed field surveys is still necessary before ob- 
taining a more certain answer on the evolution 
of longitudinal profiles of torrential Channels. 
Further in-depth analysis using higher resolu- 
tion data, alongside palaeoenvironmental work, 
will greatly benefit our understanding of geologi- 
cal and tectonic controls upon longitudinal profi- 
le of torrent stream evolution. 
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