## Določitev rabe tal s klasifikacijo satelitske podobe za namene hidrološkega modeliranja na območju zaledja izvira Rižane

# Land use determination using satellite image classification for the purposes of hydrological modelling in the Rižana spring catchment

## Mitja JANŽA

Geološki zavod Slovenije, Dimičeva 14, SI – 1000 Ljubljana, Slovenija E-pošta: mitja.janza@geo-zs.si

*Ključne besede:* daljinsko zaznavanje, klasifikacija, raba tal, izvir Rižane, Slovenija *Key words:* remote sensing, classification, land use, Rižana spring, Slovenia

#### Povzetek

V članku je predstavljena klasifikacija satelitske podobe za določitev rabe tal oziroma porazdelitve vegetacijskih razredov na obravnavanem območju napajalnega zaledja izvira Rižane. Raba tal je osnovni prostorski podatek za modeliranje evapotranspiracije v hidro-loškem modelu, ki je bil izdelan na obravnavanem območju. Rezultati klasifikacije kažejo, da največji delež varovanega zaledja izvira Rižane pokriva listnati gozd (32 %) sledijo travnata območja (19 %), grmičast gozd (19 %) in kmetijska območja (18 %) nato iglasti gozd (10 %) ter območja brez vegetacije (2 %). Prednost uporabe klasifikacije se je po-kazala predvsem v možnosti hitrega zajema novih podatkov in samostojne opredelitve vegetacijskih razredov, ki združujejo vegetacijo glede na njihov vpliv v hidrološkem krogu.

#### Abstract

In this paper the satellite image classification for the landuse (distribution of vegetation classes) determination in the study area of Rižana spring catchment is presented. The landuse is the basic spatial data for the modelling of evapotranspiration in a hydrological model that was developed in the study area. The results of the classification show that the biggest part of the study area is covered by deciduous forest (32 %), followed by grassland (19 %), shrub (19 %), agricultural areas (18 %), coniferous forest (10 %) and areas with no or sparse vegetation (2 %). The advantage of using classification is its fastness in acquiring new data and its ability to determine user-defined classes that incorporate vegetation types according to their influence in the hydrological cycle.

#### Uvod

Vegetacija oziroma raba tal ima pomembno vlogo pri procesih hidrološkega kroga. Vpliv rastlin v bilančnem smislu vodnega vira pomeni najpogosteje izgubo oziroma zmanjšanje količine napajanja vodonosnika. Ti procesi (predvsem njihova dinamika) se najučinkoviteje simulirajo s pomočjo dinamičnih hidroloških modelov. Posebna vrsta teh modelov so modeli, ki opisujejo procese s fizikalnimi enačbami in uporabljajo prostorsko porazdeljene vrednosti parametrov modela. Tovrstni modeli omogočajo simulacijo kompleksnih hidroloških procesov, vendar njihova izdelava zahteva številne prostorsko porazdeljene podatke. Pridobivanje le-teh pa je pogosto povezano s terenskimi raziskavami ter je posledično zamudno in drago.

Alternativo tej omejitvi nudijo metode daljinskega zaznavanja, ki omogočajo hitrejši in cenejši način pridobivanja podatkov, saj številni satelitski sistemi sistematično zbirajo podatke praktično celotnega zemeljskega površja. Privlačnost teh metod dodatno povečuje dejstvo, da je z razvojem tehnologije pričakovati tudi v prihodnje izboljševanje kvalitete podatkov in nižanje njihove cene.

Kot primer začetka uporabe daljinskega zaznavanja v hidrološkem modeliranju navajajo Sandholt et al. (1999) študijo Jackson et al. (1977). Takrat so uporabili daljinsko zaznavanje kot vir informacij o rabi tal. Kljub številnim drugim možnostim uporabe daljinskega zaznavanja v procesu hidrološkega modeliranja (Schultz & Engman 2000, Schultz, 1993; Engman 1995; Engman & Gurney, 1991) ostaja v praksi to še vedno največkrat, pogosto pa tudi edini način uporabe daljinskega zaznavanja pri hidrološkem modeliranju.

V nadaljevanju je opisan postopek določitve rabe tal oziroma površinske porazdelitve posameznih rastlinskih tipov na območju napajalnega zaledja izvira Rižane. Raba tal je osnovni prostorski podatek za oceno količine in predvsem prostorske porazdelitev realne evapotranspiracije in posledično napajanja vodonosnika. Na obravnavanem območju je bila raba tal uporabljena kot vhodni podatek modela realne evapotranspiracije, ki je del modela celotnega hidrološkega kroga, namenjenega predvsem oceni napajanja vodonosnika v zaledju izvira Rižane (Janža, 2003). Postopek je bil izveden s klasifikacijo satelitske podobe Landsat-5 TM (ESA, Eurimage, ZRC SAZU, 1992). Na podlagi rezultatov klasifikacije je bila ocenjena primerljivost s tematsko karto pokrovnosti in rabe tal CORINE Land Cover – CLC (Hočevar et al., 2001) ter uporabnost postopka klasifikacije za namene hidrološkega modeliranja.

## Obravnavano območje

Obravnavano območje – z varstvenimi pasovi varovano zaledje izvira reke Rižane (244 km<sup>2</sup>) – leži v jugozahodnem delu Slovenije (Slika 1) in se razteza med koordinatami Gauss-Krügerjevega sistema:

- X: od 5410800 do 5433400;
- Y: od 5035800 do 5055400.

Območje je hribovito. Najvišja točka je vrh Slavnika (1028 m nad morsko gladino), najnižja pa izvir Rižane na nadmorski višini 69 m. Hidrografsko je del Jadranskega povodja. Podnebje je zmerno celinsko (zmerno celinsko podnebje zahodne in južne Slovenije) in submediteransko (Ogrin, 1998). Razprostira se na ozemlju treh slovenskih občin (Hrpelje-Kozina, Koper in Ilirska Bistrica) in v manjšem delu (17 km<sup>2</sup>) na hrvaškem ozemlju.



Slika 1. Lega obravnavanega območja. Satelitska podoba LANDSAT-5 TM (ESA, Eurimage, ZRC SAZU, 1992), barvna zloženka RGB: kanali 1, 2, 3.

Figure 1: Position of the study area. Satellite image LANDSAT-5 TM (ESA, Eurimage, ZRC SAZU, 1992), colour composition RGB: bands 1,2,3.

#### Metode

## Klasifikacija satelitskih podob

Klasifikacija je postopek razvrščanja objektov v skupine tako, da so si ti znotraj skupin čim bolj podobni in da so objekti različnih skupin čimbolj različni med seboj (Hafner 1999). Klasifikacija satelitskih podob je proces razvrščanja pikslov - celic (slikovnih elementov podobe) v končno število posameznih razredov ali kategorij na osnovi njihove numerične vrednosti (Erdas, 1999). V primeru večspektralnih podob se klasificirajo objekti na osnovi njihove spektralne odsevnosti v različnih spektralnih pasovih (kanalih). Različne sevalne lastnosti objekta se tako odražajo v različni kombinaciji numeričnih vrednostih piksla za posamezne spektralne pasove, kar tvori spektralni vzorec. Klasifikacijski postopki, ki kot osnovo za avtomatsko klasifikacijo uporabljajo spektralno informacijo posameznega piksla, se imenujejo spektralno razpoznavanje vzorcev (ang. spectral pattern recognition) (Lillesand & Kiefer, 1994).

Uporabljata se dva načina klasifikacije: nenadzorovana in nadzorovana. Nenadzorovana klasifikacija je bolj samodejna in temelji na odkrivanju statističnih vzorcev med podatki. Klasifikacijski algoritem sam izvede združevanje podatkov glede na njihovo podobnost.

Kot pove že samo ime, je nadzorovana klasifikacija v večji meri kontrolirana (nadzorovana) s strani uporabnika. Klasifikacija je sestavljena iz učne faze in faze klasifikacije. V učni fazi uporabnik določi reprezentativna območja za določen objekt (vegetacijski razred). Na podlagi teh območij je definiran niz statistik, ki opisujejo spektralni vzorec za vsak objekt. V fazi klasifikacije je vsak piksel na podlagi podobnosti spektralnega vzorca uvrščen v ustrezni razred. V primeru da je podobnost pod določenim pragom, piksel ni uvrščen.

Klasifikacijske metode uporabljene v fazi klasifikacije se delijo na neparametrične in parametrične. Razmejitev za posamezne razrede v večspektralnem prostoru poteka v prvem primeru ročno, v drugem pa na osnovi statističnih parametrov (srednja vrednost, standardni odklon, kovarianca) učnih podatkov. V praksi najbolj razširjeni postopki parametričnih metod so: metoda najmanjše razdalje, metoda Mahalanobisove razdalje in metoda največje podobnost. Slednja metoda je pogosto najnatančnejša, saj upošteva tudi variabilnost razredov.

## Natančnost klasifikacije

Eden od najpogosteje uporabljenih prikazov natančnosti klasifikacije je klasifikacijska matrika napak (ang. error matrix, confusion matrix, contingency table). S pomočjo matrike se ugotavlja odnos med referenčnimi »resničnimi« podatki in rezultati klasifikacije. Matrika je kvadratna, število stolpcev in vrstic pa ustreza številu razredov, za katere se ugotavlja natančnost klasifikacije. Stolpci v matriki so referenčni podatki, vrstice pa klasificirani. Vrednosti v diagonalnih poljih podajajo število pravilno klasificiranih pikslov, števila v ostalih poljih pa so napake.

V primeru uporabe klasifikacijske matrike napak na učnih vzorcih bi se pričakovalo, da bodo vsi piksli, izbrani kot učni za določen razred, vanj tudi uvrščeni. Vendar vedno temu ni tako, saj so izbrani piksli na učnih območjih uporabljeni zgolj za določitev statistik posameznega razreda. Redko so tako homogeni, da so vsi uvrščeni v pripadajoči razred.

Pomembno je poudariti, da klasifikacijska matrika napak, izdelana na podlagi učnih podatkov, kaže zgolj to, kako uspešno lahko uporabimo statistike, definirane na učnem območju, za klasifikacijo tega istega območja; ne pove pa veliko o natančnosti klasifikacije izven učnih območij (Lillesand & Kiefer, 1994).

Na osnovi podatkov klasifikacije matrike napak se lahko izračuna naslednje parametre, s katerimi se vrednoti natančnost klasifikacije (Lillesand & Kiefer, 1994):

*Natančnost postopka (NP)* za razred n je mera, ki pove, koliko pikslov iz razreda n je pravilno klasificiranih:

 $\mathbf{NP} = \frac{\delta tevilo \ pravilno \ klasificiranih \ pikslov \ razreda \ n}{skupno \ \delta tevilo \ pikslov \ v \ razredu \ n}$ 

**Uporabna natančnost (UN)** za razred *n* je mera, ki podaja pravilnost klasificiranega razreda:

 $\mathbf{UN} = \frac{\texttt{število pravilno klasificiranih pikslov razreda n}{\texttt{skupno število vseh pikslov klasificiranih v razredu n}}$ 

*Skupna natančnost (SN)* podaja odstotek vseh pravilno klasificiranih pikslov:

## 

Poleg opisanih postopkov ocene natančnosti se uporablja tako imenovano *kappa statistiko*. Uvedena je bila zaradi dejstva, da se tudi s povsem naključno klasifikacijo doseže določeno stopnjo natančnosti v klasifikacijski matriki napak.

S *kappa statistiko* se meri razlika med preučevano in naključno klasifikacijo. Njena vrednost je v razponu med 0 in 1. Vrednost 0 pomeni, da se z uporabljeno klasifikacijo ni doseglo boljših rezultatov, kot bi jih z naključno. Nasprotno vrednost 1 pomeni klasifikacijo brez napake. Vrednost npr. 0.5 pa pomeni, da je uporabljena klasifikacija za 50 % boljša od naključne.

Konceptualno je kappa statistika ( $\kappa$ ) definirana kot (Lillesand & Kiefer, 1994):

$$\kappa = \frac{klasifikac.nat. - naklj.nat.}{1 - naklj.nat.}$$
izračunamo pa jo z izrazom

$$\kappa = \frac{N\sum_{n=1}^{r} x_{nn} - \sum_{n=1}^{r} (x_{n+} \cdot x_{+n})}{N^2 - \sum_{n=1}^{r} (x_{n+} x_{+n})}$$

kjer so:

- r število vrstic v klasifikacijski matriki napak;
- $x_{nn}$  število pravilno klasificiranih pikslov (diagonalne vrednosti);
- $x_{n+}$  vsota vrednosti *n*-te vrstice;
- $x_{n}$  vsota vrednosti *n*-tega stolpca;

N število vseh pikslov v matriki.

## Glajenje rezultatov klasifikacije

Praviloma je faza klasifikacije, oziroma preverjanje kriterijev za uvrstitev piksla v določen razred, opravljena na vsakem pikslu posamezno. Posledično se lahko pojavljajo posamezni piksli določenega razreda znotraj nekega drugega bolj homogenega razreda. V teh primerih je pogosto primerno glajenje rezultatov klasifikacije (Lillesand & Kiefer, 1994).

Uporaba digitalnih filtrov (cedil, sit), ki temeljijo na matematičnih operacijah, v tem primeru ni ustrezna, ker bi novoizračunana vrednost piksla (npr. povprečje) v luči klasifikacije ne imela nobene uporabne vrednosti. Za takšne namene je uporaben večinski filter (ang. majority filter). Ta filter izbere novo vrednost piksla na osnovi določene soseščine. Nova vrednost piksla je vrednost večinskega razreda v izbrani soseščini. V primeru, da v soseščini ni večinskega razreda, ostane vrednost osrednjega piksla nespremenjena ali nedoločena.

## Klasifikacija obravnavanega območja

Glede na vpliv vegetacije v modeliranem hidrološkem krogu je bilo na celotnem obravnavanem območju določenih šest vegetacijskih razredov (Preglednica 1). Kot osnova za določitev vegetacijskih razredov je bila uporabljena tematska karta pokrovnosti in rabe tal CORINE Land Cover – CLC (Hočevar et al., 2001). Karta ima obliko digitalne vektorske baze podatkov in je bila izdelana z interpretacijo satelitskih podob Landsat TM iz let 1995 in 1996, kot dodaten vir pa so bili uporabljeni aero posnetki, topografske karte in sektorske baze podatkov (Petek, 2001).

Klasifikacija obravnavanega območja v posamezne vegetacijske razrede je bila opravljena s satelitsko podobo Landsat-5 TM (ESA, Eurimage, ZRC SAZU, 1992), ki je bila zajeta

Preglednica 1: Vegetacijski razredi.

| Table | 1: | Vegetation   | classes. |
|-------|----|--------------|----------|
| 10010 |    | 1 CSCOUDIOII | crabbeb. |

| Razred | Tip vegetacije                          | CLC razredi (šifranti)                                                                                                               |
|--------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| R1     | območja brez vegetacije, urbana območja | nesklenjene urbane površine (112), dnevni kopi<br>kamnolomi (131)                                                                    |
| R2     | travnata območja                        | pašniki (231), naravni travniki (321), redko porasle<br>površine (333)                                                               |
| R3     | kmetijska območja                       | kmetijske površine drobnoposestniške strukture<br>(242), pretežno kmetijske površine z večjimi ob-<br>močji naravne vegetacije (243) |
| R4     | listnati gozd                           | listnati gozd (311)                                                                                                                  |
| R5     | iglasti gozd                            | iglasti gozd (312)                                                                                                                   |
| R6     | grmičast gozd                           | grmičast gozd (324)                                                                                                                  |

18. 8. 1992. Uporabljena je bila nadzorovana klasifikacija, parametrična metoda največje podobnosti. Učna območja so bila definirana na reprezentativnih območjih znotraj posameznih razredov karte CLC. Za posamezni vegetacijski razred je bilo uporabljenih več učnih območij, z namenom zajeti spremenljivost posameznega vegetacijskega razreda v prostoru. Skupno je bilo uporabljenih 63 učnih območji. Celotno območje je bilo v končni fazi razdeljeno v 6 vegetacijskih razredov, brez razreda neklasificiranih pikslov. Po opisani klasifikaciji je bilo uporabljeno postklasifikacijsko glajenje z večinskim filtrom velikosti 3x3 piksla.

## Rezultati in razprava

Rezultat klasifikacije satelitske podobe je prikazan na sliki 2. Največji delež varovanega zaledja izvira Rižane pokriva listnati gozd sledijo travnata območja grmičast gozd in kmetijska območja nato iglasti gozd ter območja brez vegetacije (Preglednica 2).

## Natančnost uporabljene klasifikacije

Ocena natančnosti klasifikacije z uporabo dejanskih podatkov na terenu ni bila izvedena, saj je obdobje, ko je bila zajeta satelitska podoba, časovno preveč oddaljeno, da bi se lahko primerjalo z današnjim stanjem. Iz navedenih razlogov je bila opravljena zgolj ocena natančnosti klasifikacije na učnih območjih in primerjava rezultatov klasifikacije s karto CLC, ki pokriva slovenski del obravnavanega območja.

Natančnost klasifikacije na učnih območjih je podana v obliki klasifikacijske matrike napak (Preglednica 3) in na podlagi teh podatkovnih določenih parametrov natančnosti klasifikacije (Preglednica 4). Ocene kažejo, da imajo najbolj homogene spektralne lastnosti izbrana učna območja razredov R5 (iglasti gozd) in R4 (listnati gozd), sledi razred R2 (travnata območja), nato razred R3 (kmetijska območja) ter razreda R1 (območja brez vegetacije) in R6 (grmičast gozd).

Preglednici 5 in 6 prikazujeta ujemanje rezultatov klasifikacije s karto CLC v obliki klasifikacijske matrike napak in pripadajočega izračuna natančnosti. Razred CLC mešani gozd ni bil obravnavan kot samostojni razred, saj je sestavljen iz listnatega in iglastega gozda. Pri oceni primerljivosti so bila območja mešanega gozda na karti CLC, uvrščena v razred iglastega ali listnatega gozda obravnavana kot pravilno uvrščena območja.

Ocena primerljivosti razredov karte CLC in klasifikacije kaže večjo primerljivost razredov, ki imajo višjo natančnost klasifikaci-

Preglednica 2: Površinski deleži klasificiranih vegetacijskih razredov na obravnavanem območju.

Table 2: Cover portions of the classified vegetation classes in the study area.

| Razred | Tip vegetacije                          | Površinski delež [%] |
|--------|-----------------------------------------|----------------------|
| R1     | območja brez vegetacije, urbana območja | 2                    |
| R2     | travnata območja                        | 19                   |
| R3     | kmetijska območja                       | 18                   |
| R4     | listnati gozd                           | 32                   |
| R5     | iglasti gozd                            | 10                   |
| R6     | grmičast gozd                           | 19                   |

Preglednica 3: Klasifikacijska matrika napak na učnih območjih.

Table 3: Classification error matrix for training sites.

|             |            |     |       | Učni podatki |           |      |      |       |
|-------------|------------|-----|-------|--------------|-----------|------|------|-------|
|             |            | R1  | R2    | <b>R</b> 3   | <b>R4</b> | R5   | R6   | vsota |
| Ŋ           | R1         | 412 | 60    | 134          | 2         | 5    | 0    | 613   |
| dat         | R2         | 3   | 9511  | 1160         | 38        | 27   | 167  | 10906 |
| od          | <b>R</b> 3 | 65  | 700   | 5177         | 45        | 14   | 136  | 6137  |
| am          | R4         | 0   | 45    | 66           | 17719     | 6    | 628  | 18464 |
| CIL         | R5         | 1   | 18    | 33           | 10        | 2533 | 49   | 2644  |
| sifi        | R6         | 0   | 348   | 300          | 951       | 50   | 3417 | 5066  |
| <b>K</b> Ia | vsota      | 481 | 10682 | 6870         | 18765     | 2635 | 4397 | 43830 |

je na učnih območjih in obratno slabšo primerljivost razredov z manj homogenimi spektralnimi lastnostmi na izbranih učnih območjih. Predvsem se razlikujeta vegetacijska razreda R1 (območja brez vegetacije) in R6 (grmičasti gozd). V teh primerih najverjetneje ne gre zgolj za napačno klasifikacijo, čeprav ocena natančnosti klasifikacije na učnih območjih kaže najslabšo natančnost klasifikacije prav teh dveh razredov. Razred R1 je na karti CLC (slika 2) zastopan z daleč najmanjšim površinskim deležem, ki je omejen zgolj na večja urbana naselja in ne vključuje manjših zaselkov. V tem pogledu daje izdelana klasifikacija verjetno realnejšo sliko. Razred R6 (grmičasti gozd) je na karti pokrovnosti CLC prikazan kot homogena območja v obliki poligonov, na klasificirani karti pa predvsem kot območja, ki se pojavljajo na robovih oziroma prehodih gozda v druge razrede, kar omogoča logično razlago rezultatov klasifikacije.

## Zaključki

Določitev rabe tal s pomočjo klasifikacije satelitskih podob je eden od načinov upora-

|    | Referenčni podatki | Klasificirani podatki | Pravilno klasificirani | NP   | UN   |
|----|--------------------|-----------------------|------------------------|------|------|
| R1 | 481                | 613                   | 412                    | 0.86 | 0.67 |
| R2 | 10682              | 10906                 | 9511                   | 0.89 | 0.87 |
| R3 | 6870               | 6137                  | 5177                   | 0.75 | 0.84 |
| R4 | 18765              | 18464                 | 17719                  | 0.94 | 0.96 |
| R5 | 2635               | 2644                  | 2533                   | 0.96 | 0.96 |
| R6 | 4397               | 5066                  | 3417                   | 0.78 | 0.67 |
|    |                    |                       | SN                     | 0.88 |      |
|    |                    |                       | skupni K               | 0.84 |      |

Preglednica 4: Izračun natančnosti klasifikacije na učnih območjih. Table 4: Classification accuracy assessment for training sites.

Preglednica 5: Primerljivost klasifikacije s karto CLC, prikazana v obliki klasifikacijske matrike napak.

Table 5: Comparison of classification results with CLC map, expressed with classification error matrix.

|      |            | Podatki pokrovn |            |       |           | CLC   |       |        |
|------|------------|-----------------|------------|-------|-----------|-------|-------|--------|
|      |            | R1              | <b>R</b> 2 | R3    | <b>R4</b> | R5    | R6    | vsota  |
| tki  | <b>R1</b>  | 1016            | 781        | 1809  | 357       | 803   | 481   | 5247   |
| oda  | <b>R</b> 2 | 168             | 24345      | 10126 | 6382      | 2903  | 8577  | 52501  |
| þć   | <b>R</b> 3 | 467             | 11516      | 27126 | 10678     | 4223  | 7565  | 61575  |
| ani  | <b>R</b> 4 | 74              | 1159       | 2737  | 99981     | 4721  | 5297  | 113969 |
| icir | R5         | 37              | 492        | 654   | 5420      | 22122 | 2566  | 31291  |
| asif | R6         | 79              | 5668       | 4891  | 25950     | 5990  | 16533 | 59111  |
| K    | vsota      | 1841            | 43961      | 47343 | 148769    | 40761 | 41019 | 323694 |

Preglednica 6: Primerljivost klasifikacije s karto CLC, izražena s parametri natančnosti klasifikacije. Table 6: Comparison of classification results with CLC map, expressed with classification accuracy parameters.

|    | Podatki pokrovnosti | Klasificirani podatki | Pravilno klasificirani | NP   | UN   |
|----|---------------------|-----------------------|------------------------|------|------|
| R1 | 1841                | 5247                  | 1016                   | 0.55 | 0.19 |
| R2 | 43961               | 52501                 | 24345                  | 0.55 | 0.46 |
| R3 | 47343               | 61575                 | 27126                  | 0.57 | 0.44 |
| R4 | 148769              | 113969                | 99981                  | 0.67 | 0.88 |
| R5 | 40761               | 31291                 | 22122                  | 0.54 | 0.71 |
| R6 | 41019               | 59111                 | 16533                  | 0.40 | 0.28 |
|    |                     |                       | SN                     | 0.59 |      |
|    |                     |                       | Skupni <i>K</i>        | 0.46 |      |



Slika 2: Karta CLC (Hočevar et al., 2001) (levo) in rezultat klasifikacije (desno). Figure 2: CLC map (Hočevar et al., 2001) (left) and result of classification (right).

be daljinskega zaznavanja pri hidrološkem modeliranju. V obravnavanem primeru so se pokazale naslednje prednosti uporabe klasifikacije:

 Možnost hitre in poceni določitve rabe tal na območjih kjer ti podatki niso razpoložljivi. To je na delu napajalnega zaledja na območju Hrvaške, ki ga karta CLC ne pokriva.

 Možnost samostojne določitve razredov, ki po svojih značilnostih najbolje odražajo vegetacijske razlike za modeliranje evapotranspiracije. S klasifikacijo so bila območja mešanega gozda na karti CLC razdeljena na območja listnatega in iglastega gozda, ki so v hidrološkem modelu obravnavana različno.

 V primerjavi s karto CLC, ki je poligonski informacijski sloj in predvideva homogenost znotraj poligonov, omogoča klasifikacija večjo prostorsko natančnost. Ta je načeloma pogojena le z ločljivostjo satelitske podobe.

 Pri klasifikaciji lahko uporabimo satelitske podobe, ki so bile zajete v obdobju uporabljenem pri hidrološkem modeliranju, s čimer se izognemo napakam, ki so posledica neažurnosti podatkov. Z obdelavo satelitskih podob iz različnih obdobij lahko spremljamo razvoj naravnega sistema. Vključitev časovne spremenljivosti prostorskih podatkov v modelu pa omogoča realnejšo simulacijo naravnega sistema in zanesljivejšo napoved preučevanih procesov.

## Zahvala

Za možnost uporabe satelitske podobe Landsat-5 TM se zahvaljujem dr. Krištofu Oštirju in ZRC SAZU.

## Literatura

Engman, E.T. 1995: Recent advances in remote sensing in hydrology. - Reviews of Geophysics, Supplement, 967-975.

Engman,E.T. & Gurney, R. 1991: Remote Sensing in Hydrology. - Chapman & Hall, 225 pp., London.

ERDAS. 1999: ERDAS Field Guide (Fifth Edition). - ERDAS, Inc, 672 pp., Atlanta. ESA, Eurimage & ZRC SAZU 1992: Landsat-

5 TM (satelitska podoba zajeta 18. 8. 1992).

Hafner, J. 1999: Integracija GIS-a in umetne inteligence v geologiji: doktorska disertacija. -

Univerza v Ljubljani, NTF, 170 pp., Ljubljana. Hočevar, M., Kobler, A., Vrščaj, B., Poljak, M & Kušar, B. 2001: Corine karta rabe tal in pokrovnosti Slovenije: Podprojekt: Fotointerpretacija in rezultati: zaključno poročilo. - Go-zdarski inštitut Slovenije, 83 pp. Ljubljana.

Jackson, T.J., Ragan, R.M. & Fitch, W.N. 1977: Test of Landsat based urban hydrologic modeling. - ASCE Journal of Water Resources Planning and Management, 103, 1065-1069.

Janža, M. 2003: Modeliranje napajanja regionalnega vodonosnika z uporabo metod daljinskega zaznavanja: doktorska disertacija. – Uni-verza v Ljubljani, NTF, 135 pp., Ljubljana. Lillesand, T. M. & Kiefer, R. W. 1994: Re-

mote sensing and image interpretation (Third edition). – John Wiley & Sons, 750 pp., New York. Ogrin, D. 1998. Podnebje. – V: Geografski

atlas Slovenije - država v prostoru in času. Ure-

dniki J. Fridl, D. Kladnik, M. Orožen Adamič & D. Perko. – DZS, 110–111, Ljubljana. Petek, T. 2001: CORINE Land Cover (CLC)

v Sloveniji. – V: Uporaba informacij o pokrovnosti

in rabi prostora pri varstvu okolja in trajnostnem razvoju: zbornik referatov, 1-8, Gozd Martuljek. Sandholt, I., Andersen, J., Dybkjaer, G., Lo, M., Rasmussen, K., Refsgaard, J. C. & Jensen, K. H. 1999: Use of remote sensing

data in distributed hydrological models: applications in the Senegal River basin. - Danish Journal of Geography, 99, 47-57.

Schultz, G.A 1993: Application of GIS and remote sensing in hydrology. - IAHS Publ., 221, 127-140.

Schultz, G.A. & Engman, E.T. (eds.) 2000: Remote sensing of surface water. - Springer Verlag, 473 pp., Berlin.