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Motion of rock masses on slopes 
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Abstract 

This paper shows the different ways of how rock masses (stones, rocks, and blocks) 
move along slopes and for each different way of motion (free fall, bouncing, rolling, sliding, 
slowing down, lubrication, fluidization) adequate dynamic equations are given. Knowing 
the kinematics and dynamics of travelling rock masses is necessary for mathematical mo- 
deling of motion and by this an assessment of maximal possible rockfall runout distances 
as an example of a sudden and hazardeous natural phenomenon, threatening man and his 
property, especially in the natural environment. 

Kratka vsebina 

V prispevku prikazujemo različne načine gibanja skalnih gmot (kamnov, skal in blokov) 
po pobočjih in za vsak možni način gibanja (prosti pad, poskakovanje, kotaljenje, drsenje, 
ustavljanje, lubrikacija, utekočinjenje) podajamo ustrezne enačbe gibanja. Poznavanje ki- 
nematike in dinamike premikanja skalnih gmot je nujno za matematično modeliranje giba- 
nja in s tem ocene maksimalnega možnega dosega podorov kot primera naglega in nevarne- 
ga naravnega pojava, ki ogroža človeka in njegovo imetje, predvsem v naravnem okolju. 

Introduction 

In analysis of risk related to rock falls 
and other large f orms of rock slides and rock 
avalanches, including large rock falls, for 
a detailed mathematical modelling of the 
phenomena the knowledge of mathematical 
description (equations) of ali the different 
ways of disintegrated rock mass motion is 
necessary (stones, rocks, and blocks). Usu- 
ally, the aim of mathematical modelling is 
to estimate the maximum runout distance 
in space and, which is a part of risk ana- 

lysis, providing hazard assessment against 
these dangerous phenomena (Petje, 2005). 
There are also empirical equations for the 
runout estimate of these phenomena (Pet- 
je et al., 2005a), which can be used at the 
regional scale (from 1:5,000 to 1:25,000). In 
considering the risk of rock falls at more 
detailed scales (from 1:500 to 1:2,000) it 
is usually necessary to make the use of 
more detailed mathematical models of rock 
fall motion (Petje et al., 2005b), which are 
based on the equations discussed in this 
paper. 
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As an introduction, let us discuss the dif- 
ference between the motion of coherent and 
disintegrated material, which is analogous 
to the difference between the motion of a 
rigid body and motion of fluids (Erismann 
& Abele, 2001). Gravity is the governing 
principle in the motion of disintegrated ma- 
terial. It creates the vertical compression 
stress which increases from top to bottom. 
The tendency of the material to spread hori- 
zontally is due to the stress acting constan- 
tly or during collisions upon the surface of 
particles of the material. This creates the 
horizontal stress that is usually a function 
of the vertical stress, thus creating resistan- 
ce against the vertical shear. 

The resistance against shear deformations 
depends on the depth. Thus, the disintegra- 
ted material (rock mass) is neither isotropic 
nor homogeneous. The anisotropy of disin- 
tegrated material is shown when the mate- 
rial is under extension stress (strain). While 
the fluid stays a continuum as long as the 
static stress holds it together, the rock debris 
is much less capable of filling in the voids. 
The disintegrated material can be almost 
considered as coherent under stress, and as 
incoherent if subjected to extension forces. 
This is valid for ali directions. When the ma- 
terial moves along the slope with decreasing 
inclination, it moves as if it were coherent. 
On a slope with increasing inclination, the 
material loses its cohesion and tends to be 
split into parts. In such cases the analogy 
with fluids given above is a rough estimate. 

The main differences between the cohe- 
rent and the disintegrated material regar- 
ding their reach on a slope can be summa- 
rised as follows: 

- When the material is longitudinally 
compressed (on slopes with decreasing 
inclination), the difference between the 
motion of the coherent and disintegra- 
ted material is minimum. 

- The dissipation of energy between the 
moving particles in disintegrated mate- 
rial occurs mainly by friction or collisi- 
on between the particles at the expense 
of the potential (gravitational) energy. 
Such loss of internal kinetic energy does 
not occur in coherent material, which is 
why the coherent material moves furt- 
her than the disintegrated one. 

- In motion of the disintegrated material 
along undulated and inclined terrain, a 
part of the gravitational energy is lost 
due to the internal relative motion. The 

coherent material bridges the undulati- 
ons on the inclined terrain and travels 
a larger distance. 

- The disintegrated material loses its po- 
tential energy (due to reduction of the 
thickness of the material that moves) 
by lateral spreading of material on un- 
confined terrain and thus reducing the 
reach when compared to the coherent 
material. 

- The disintegrated material moves ea- 
sier through narrow cross sections like 
gorges or in sharp curves than the co- 
herent one. 

- The disintegrated material may form a 
fan. 

- The coherent material has a tenden- 
cy to destroy local barriers, while the 
disintegrated material rather tends to 
flow over them. 

In the time of quantitative research in 
rockfalls and rocks slides, the motion velo- 
city was based on the single events, that is, 
based on the time that elapsed between the 
start of rock mass motion and its stopping 
point. By scientific approach, Heim (1932) 
first started to study the velocity in rock fall 
motion. 

Figure 1 shows the vertical cross section 
along the motion trajectory of the centre of 
gravity of rock mass from its release to its 
stop. Line E is the energy line between the 
centres of gravity. The slope tan/Brepresents 
the average of the slope on which the cen- 
tre of gravity has moved. If we presuppose 
the constant Coulomb’s friction coefficient 
/je = tan fie, this means that the mass has mo- 
ved on the energy line and not on the actual 
slope, and thus has a constant velocity. The 
entire energy is released and transformed 
into heat. In reality, the centre of gravity is 
at a distance from the energy line by dz and 
the potential energy is transformed into ki- 
netic energy. The veloeitv is calculated from 
the equation v = yj2g ■ d z. The velocity vector 
has the motion direction of the centre of 
gravity in a given moment. Velocity is thus 
not identical to its horizontal component 
(except in horizontal motion). Due to spre- 
ading and thus thinning it can be expected 
that ali mass does not move with the same 
velocity, however, for the worst čase scena- 
rio the velocity of the centre of gravity can 
be used. The weakest point of this method is 
also its biggest advantage: the simplicity of 
use. With the position of the centres of gra- 
vity we can determine the average coeffici- 
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Fig. X. Determining of rockfall mass velocity using the energy method. Points A and B represent centres 
of gravity of rockfall mass before and after the release, respectively, line C is flowpath of the centre 
of gravity, line E is energy line, and line F is average gradient or travel angle of the rockfall mass. 

Slika 1. Določitev hitrosti podome mase po energijski metodi. Točki A in B predstavljata težišči podorne 
mase pred in po premiku mase, C pot težišča, E energijsko črto in F povprečen naklon oziroma 

kot gibanja podorne mase. 

ent of friction and thus also the calculation 
of the rock fall mass is correct. 

In the next section a detailed description 
of ways of motion of rock mass along slopes 
with relevant mathematical representation 
of motion equations will be discussed, which 
are the basis for state-of-the-art mathema- 
tical simulation models of rockfalls. 

Free fall 

Free fall occurs when the slope (below the 
potential release area) is steeper than 76°, 
however, the boundary values given in the 
literature differ, also giving the value of 70° 
as the boundary value for free fall (Ritchie, 
1963). The characteristic of free fall is mo- 
tion in the air, without any contact with the 
ground. It can occur in the rolling or sliding 
phases, where a great change in the slope 
occurs, or upon impact with the ground. Du- 
ring the free fall, two types of motion occur. 
The first one involves the translation of the 
rock centre, which is analytically described 
with the quadratic equation, and the other 

involves rotation around the centre. Trans- 
lation and rotation carry special significance 
because rocks are rarely round. Due to the 
rotation in the air, the rock rebounds upon 
impact into different directions as compa- 
red to its previous direction. Velocity is also 
affected by air friction, however air friction 
does not have significant effects on the rock 
motion (Bozzolo & Pamini, 1986). The 
next factor to influence the falling rocks 
and their trajectories is their mutual collisi- 
on. However, the analysis of these effects is 
rather difficult (Azzoni et al., 1991). 

During rock fall, gravitation is more sig- 
nificant than friction. If the Coulomb fricti- 
on is presupposed as a working hypothesis 
for the start of motion, then acceleration a 
and gravity g are as follows: 

— = sin p -/x -cos p, (1) 
g 

where p is slope angle and // is coefficient 
of friction. Falling occurs at the relationship 
alg > 0.6 (Figure 2) or with a slope angle gre- 
ater than 45°-50° (Table 1). 
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M s cos 

slope angle - 
naklon pobočja, 

a/g (fj = 0.2) 

a/g (ju = 0.4) 

45° 

0.57 

0.42 

50° 

0.64 

0.51 

55° 

0.70 

0.59 

60° 

0.77 

0.67 

g sin p 

g cos p 

Fig. 2. Free falling should develop at the ratio 
a / g > 0.6 (CoG - centre of gravity). 

Slika 2. Padanje naj bi se pojavilo pri razmerju 
a / g > 0,6 (CoG - težišče) 

Until a falling rock has no contact with 
the ground, the forces are reduced to gra- 
vitation and aerodynamic effects only and 
they are unproblematic. 

Equations describing motion are: 
dvx 

~dt 
dvy 

~dt 
= a.. = ±v' 

cd,A 
28/ 

, cd,A 
28/ 

vx = \axdt —> x = \vxdt (2) 

- S -> L = \aydt -> y = \vydt 

Table 1. Free falling at slope angle p - a 
comparison between rock acceleration a and 
gravity acceleration g (Erismann & Abele, 

2001). 
Tabela 1. Padanje po pobočju z naklonom 

P - primerjava pospeška a s pospeškom prostega 
pada g (Erismann & Abele, 2001). 

• In the čase of a fast enough rotation the 
Magnus effect can be observed. Because 
of the boundary layer of the air around 
the spinning surface, an aerodynamic 
force perpendicular to both the vectors 
of velocity and spin is created. The re- 
sult is a negative lift and the reach of 
the bounce is reduced. 

• For the falling velocity of about 100 m/ 
s vacuum trajectories can be predicted. 
This holds true for motion of large sin- 
gle rock blocks as well as for coherent 
mass motion and disintegrated mass 
that is not too “loose”. 

• In the loose disintegrated mass, large 
particles rebound farther than smal- 
ler ones. The result is the tendency for 
a two-dimensional deposition. Large 
rocks travel further and are deposited 
at the top of the debris. 

If we disregard the air friction, the equa- 
tions are simplified (Figure 3). 

Acceleration: 

where a is the acceleration component, c is 
coefficient of friction, A is cross section per- 
pendicular to the velocity vector, V is volu- 
me, g is gravitation, 3, is air density and 82 is 
rock density; x and y are the co-ordinates. 

For practical calculations and to simplify 
the problem the following presuppositions 
can be assumed: 

• Compressibility effects in the air can 
be disregarded if the fall velocity is less 
than 100 m/s. 

• The effects of wind for large rock blocks 
(diameter of 1 m or more) can be disre- 
garded, except in thunderstorms. 

• Drag coefficient c depends upon the 
shape (c ~ 0.5 for spherical bodies). 

• The aerodynamic lift can be disregar- 
ded, since it occurs under rare condi- 
tions. 

a,(0 = ° ay(t) = S (3) 

Velocity initial values in time t0: 

b(0 = vo* b, (/<>) = V (4) 

Co-ordinates of the initial position of the 
centre of gravity: 

xM = xa y(to) = yA + ho (5) 
By integration of acceleration in time: 

*(') = vo,('-'»)+L + (6) 

equations of parabola are obtained: 

y(t)=~ sif -10 f+% (t ~ t0) ■+ {yA + K) (7) 

y(t)=2 +—(x(')-x.,)+(yA +ho) (8) 2 v0l v0, 
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Fig. 3. Definition of a free fall for a body with 
lumped mass (Azzoni et al., 1995). 

Slika 3. Definicija prostega pada za telo z maso, 
skoncentrirano v točki (Azzoni et al., 1995). 

The energy equation can be written as 
follows: 

v = ^2gh (9) 

E„=- (10) 

Primary falling or free fall occurs, when 
the rock fall motion is undisturbed. Each 
disturbance in falling causes the motion to 
become secondary. Such disturbances can 
last a longer period of time. A rock fall that 
is completely undisturbed (free fall) is much 
more rare than falling, where rebounds from 
the not completely vertical wall occur. Be- 
cause of the rebounds, the direction, length 
and shape of trajectory depend on many 
factors, which make it highly complex. The 
motion trajectory and the run-out zone de- 
pend on: 

• slope (height, angle, orientation, sha- 
pe); 

• falling stones (size, shape, strength); 
• characteristics of the bedrock (rebound 

coefficient, vegetation, gravel, terra- 
ces); 

• angle of rock hitting the ground; 
• deformations of rock and ground. 
The factors that increase rock rebounds 

are hard bedrock, lack of vegetation, slopes 
with high rebound factors and slopes with 
the so-called “ski jumps”, which cause the 
rocks to rebound far away from the foot of 

the hill and redirect the motion from the ver- 
tical fall into the horizontal direction. Upon 
impact, the rocks from very hard bedrock do 
not fall apart and on clean surfaces without 
gravel they rebound strongly. 

Free fall, bouncing and rolling are stron- 
gly related. A falling rock will sooner or 
later start rolling. In tum, fast rolling of a 
body of irregular shape on uneven surface 
necessary entails impact and rebounds. 

Bouncing 

When the air trajectory (parabola) inter- 
sects with the slope (straight line), ground 
hit, rebound and bouncing occur. Upon first 
contact with the slope, rocks have a tenden- 
cy to break. Regardless whether they crush 
or not, with the block size of 0.3 m3 the ener- 
gy loss is between 75 % and 85 %. Similar 
observations were made with other rockfalls 
for blocks of the size of 1 to 10 m3 (Desco- 
eudres & Zimmermann, 1987). Internal 
forces of reaction between two bodies du- 
ring impact are much bigger than the active 
external forces (such as weight). A precise 
determination of internal forces is highly 
significant, however, it is hard to obtain. 
Experimental analyses of impacts show that 
the way of motion after the impact strongly 
depends on the block shape, slope geome- 
try and quantity of dissipated energy that 
depends on the geomechanical characteri- 
stics of the block, slope and impact angle. 
Field observations have shown (Bozzolo et 
al., 1988) that due to the impacts of falling 
rocks, the rocks that were initially in pla- 
če then started to move. For this probably a 
minimum slope angle is required, being the 
same as the dynamic coefficient of friction 
(arctg where nr is the coefficient of fric- 
tion). The rocks that are hit rotate upon im- 
pact and start sliding and then rolling. 

The impact of the rock with the ground 
is a complex event to describe mathemati- 
cally. The energy loss of the rock depends 
on the plastic deformations of the rock and 
the ground. Mostly, the models do not take 
into account breaking and crushing of rocks 
(Bozzolo, 1987), although this often oc- 
curs when the rock is brittle and the ground 
hard. In the mathematical models that con- 
sider the rock as lumped mass, the velocity 
after the contact can be determined based 
on the principle of preservation of the an- 
gular momentum in short time steps before 
and after the impact (with certain simplifi- 
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cations, such as elliptical shape of the block, 
impact in one point only, rotation around 
the point after impact), with the help of the 
coefficient of restitution e, usually defined as 
the relationship of velocity before and after 
the impact: 

* = -■ (ID vo 

In most models the normal component of 
velocity vy is considered and it is assumed 
that the tangential velocity component is 
preserved. Thus the coefficient of restitution 
can be written as (Bozzolo, 1987): 

(12) 

With models that consider the rock as a 
rigid body, two parameters are needed for 
the calculation of the change of momentum 
and the new angular velocity: coefficient of 
friction p and coefficient of losses e, written 
as (Bozzolo, 1987): 

V, ('>* 
£ = 1  , (13) 

}Fv(/H 

ti 

Fig. 4. Rock block before and after the impact 
(Azzoni et al., 1995). 

Slika 4. Blok pred in po trku 
(Azzoni et al., 1995). 

I-co0 + v0x-dy-v0y-dx 

I + d] + dl 
(16) 

The velocity component after the impact 
is obtained by inserting the value of eo, cal- 
culated in equation (16), into equation (15). 
The total kinetic energy per unit of mass af- 
ter the impact can be described as: 

where Fy is the reaction force perpendicular 
to the impact surface, t = 0, f, and t2 are the 
time at the beginning of the impact, at ma- 
ximum ground pressure, and the time at the 
end of the impact, respectively. The equati- 
on is valid only at the central impact. 

In the CADMA model (Azzoni et al., 
1991), where the rock is taken as a rigid 
body, the energy-based coefficient of re- 
stitution is based on the principle of pre- 
servation of angle momentum in the time 
interval before and after the impact (Fi- 
gure 4): 

/' + v0„' d„ - • dx = I ■ m + v, • dy - vy ■ dx, (14) 
b = °Kd

y b = -co2dx (15) 
dy = Yc~YP 

dx = Xa- Xp 

where I is the moment of inertia around the 
centre, coa and co are angular velocities before 
and after the impact, v0x,voy ,vx,vy are velocity 
components before and after the impact and 
dx and dy are co-ordinates of the centre of 
gravity of the rock. 

If equation (15) is inserted into the right 
hand-side of equation (14), the following 
equation is obtained: 

K = ^(l-a)1 +vl+vl)=~e>2\i+d2
t +d1

y)=Y<o1 -(i+S) (17) 

Now it is possible to describe the coeffici- 
ent of restitution as: 

£ = — = -F— (/ + b) 0<£<1 (18) 
K„ 2 K0 

V ’ 

r2={d]+d2
y) (19) 

where K„ is the total kinetic energy during 
the contact, I is angular momentum around 
the mass centre, a>0 and a are angular velo- 
cities before and after the contact (Azzoni 
et al., 1991). 

The relationships between energy losses 
and other variables are not exactly deter- 
mined. In most cases, the effects of plastic 
deformations of the ground and the geo- 
metric configuration of the contact are ta- 
ken into account by the so-called »contact 
functions«, describing the rock kinematics 
(velocity) or dynamics (energy) before and 
after contact. These functions are expressed 
as the coefficient of restitution and the coef- 
ficient of friction. 

In bouncing, the trajectory is a parabola. 
The falling phase (motion along the parabo- 
la) is followed by a contact with the ground. 
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Fig. 5. Free-fall trajectory. 
Slika 5. Trajektorija padanja. 
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This may be followed by another bounce, 
or change of the way of motion: sliding or 
rolling may occur. The way of motion af- 
ter the contact with the ground depends on 
the slope and the block size. Some authors 
claim that bouncing is the prevailing type 
of motion at the slope angle in the interval 
between 45° and 63° (John & Spang, 1979). 
Observations have shown that large blocks 
hardly bounce at ali, but rather roli. After a 
large bounce they usually fall apart. Smal- 
ler blocks, on the other hand, can bounce for 
a long time. The parabolic trajectory of fall 
(Figure 5) can be written in the following 
way: 2 

x(t) = v0-t-cosS y(t') = v0-t-sinS-^-~- (20) 

We obtain the equation of parabola: 
*2 g y = x • tan S - 

2 • v„ • cos' S 
Height of bounce: 

H vi -siru? siru? + cos<? -tan/? 

Length of bounce: 

W = —— (siru? • cos<? + taru? ■ cos2 <?) 

Velocity: 

(21) 

(22) 

(23) 

vx = v0 cos S = kons t. vJ,=v0-sin S-g-t (24) 

Between two bounces the total energy and 
the rotation energy remain constant. Based 
on this it can be assumed that with smaller 

height the potential energy decreases, and 
due to the increase of velocity (due to gravi- 
tation) translational energy increases. Each 
bounce ends, as free fall, with a contact with 
the ground or an obstacle. Plastic deforma- 
tions of the block and the ground and the 
potential breakage of the block into smaller 
parts cause loss of energy. The loss is higher 
when: 

• the surface roughness is higher as com- 
pared with the block size; 

• the upper layer of the slope can be pla- 
stically deformed; 

• the impact angle is steeper (Ritchie, 
1963). 

During contact with an obstacle, dama- 
ge or total destruction (of a tree, house) may 
occur or the energy is transferred (to e.g. a 
stili rock). 

The velocity before contact (index i): 

. M-*(')_T')v('-?») + 'Vr 
' t t (25) 

i(0.. i ('-'o)2
|v ('~Q {yA+k) 

t 2 * / 0y t t 
The velocity can be split into a compo- 

nent perpendicular to the ground, and the 
tangential component: 

= vj(r)cosa-vJ(()sincf vj( =vJ,(i)sina-v>(()cosa (26) 

Velocity after contact: 

vnl=Rn-vln v„=Rl-vll (27) 

If after rebound, the velocity is trans- 
formed into horizontal and vertical compo- 
nents, we obtain: 

'’xr(‘)=
vr„{t)sina + vr,c°s°‘ 

\t)= vrl )sin a - vrt cos a 

The slope characteristics that determine 
surface material elasticity and thus the nor- 
mal coefficient of restitution Rn, are a com- 
mon characteristic of slope material and 
vegetation cover. Slope characteristics that 
determine the tangential coefficient of resti- 
tution Rt, are surface roughness, vegetation 
(mostly trees and bushes) and the number of 
trees on the slope that function as an obstac- 
le (standing or fallen trees). The next factor 
determining the tangential coefficient of 
restitution is the radius of the falling rock, 
where for bigger rocks the effective slope 
roughness is smaller than for smaller rocks 
(Dorren et al., 2004). 

The tangential coefficient of restitution 
has a value between 0.90 and 0.92 for very 
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hard surfaces and bedrock and decreases 
with an increase of vegetation (Table 2). On 
fans that are covered with some vegetation, 
the coefficient is between 0.80 and 0.87. On 
softer ground covered with soil and loose 
rock the coefficient is between 0.78 and 0.80. 
The forest has a major effect on the decrease 
of the tangential coefficient of restitution: 
the normal coefficient of restitution is bet- 
ween 0.28 and 0.30 for soft surfaces, betwe- 
en 0.33 and 0.37 for slopes with large rocks, 
and 0.37 to 0.53 for smooth, hard surfaces 
(some give the value of up to 0.75); the co- 
efficient of friction is between 0.2 and 0.35 
for soft surfaces and 0.75 to 0.80 for rock 
slopes. 

Until now, the bounce was treated in this 
paper as a one-time event, which is initia- 
ted in a steep slope and ends with a landing. 
Often, the bounce will not end with a lan- 
ding, but with a second bounce. The reason 
lies in the complexity of the landing: irregu- 
lar shapes, a body, possibly in rotation, hit- 
ting the non-vegetated (bare) ground, scree 
or non-consolidated soil. That is why the la- 
boratory-determined coefficients have such 
a wide range, making it hard to determine 
the exact value. 

In order to determine the initial conditi- 
ons when the rebound occurs again, two pa- 
rameters must be considered. The first para- 
meter is the coefficient of elastic restitution: 

J = ^~ 
— 

(29) 

where up is the velocity component perpen- 
dicular to the slope in landing, and vp is the 
velocity component at the start of rebound. 
The other parameter is coefficient of fricti- 
on /i of a non-rotating body in the process 
of rebounding. If we suppose the validity of 
the Coulomb’s rule during the impact, the 
loss of velocity is obtained from the loss in 
momentum, which is a product of /u with the 
change of momentum perpendicular to the 
surface. Written in terms of velocity: 

vl =ul~ m{vp-up), (30) 

where uL and vL are the longitudinal velocity 
components before and after the impact. 

The following equation represents the 
space of time between two consecutive im- 
pacts: 
At = -u„ - = -u„-u — = ~2u„ -. (31) J +1 

’ g•COS P g-sin/? g ■ COS /3 

Interestingly, it can be assumed from 
H = tan /} that motion through the air is much 

more energy rational than the motion on the 
ground, that is, within the validity of the 
Coulomb’s Law. 

Rolling 

If the average slope angle is reduced, bo- 
uncing changes into rolling with or without 
bouncing. In rolling the rock is almost con- 
stantly in contact with the surface (Hungr & 
Evans, 1988). During motion in the form of 
rolling and bouncing, the rock is in fast ro- 
tation and only the rock areas with the big- 
gest radius maintain contact with the gro- 
und. This is why the centre of gravity moves 
almost in a straight line, which is the most 
economical way of motion in relation to 
energy loss. The combination of rolling and 
short bounces is one of the most economical 
ways of motion. 

Rolling is the prevailing way of motion: 
• with long trajectories on a moderate 

slope (Evans & Hungr, 1993). The 
slope can reach up to 45°; 

• in fans where the previous deposited 
blocks were smaller than the arriving 
rockfall blocks. 

Rolling occurs when the vertical projecti- 
on of the centre of gravity is outside the pol- 
ygon defined by the contact surface. These 
conditions are identical to those describing 
the topple of mass. Rolling is in fact a re- 
peated toppling, where geometry plays an 
important role. 

A right polygonal prism will start rolling 
at slope angle /č higher than 180/n and coef- 
ficient of friction // > tan p (Table 3). Smaller 
friction may lead to sliding. 

If we take a look at a single body, the 
following four conditions define the way of 
motion: 

• The possibility of rolling depends to 
a high degree on the body shape. The 
ability to roli is asymptotically increa- 
sed by the approximation of the round 
cross-section, with the centre of gravity 
(mass centre) in its geometric centre. 

• Once the body starts rolling, the rolling 
continues even under the conditions 
that would not allow rolling to start 
(unfavourable slope angle and coeffici- 
ent of friction). 

• Even with completely plane ground, 
non-circular rolling bodies start boun- 
cing at a critical velocity. 

• Next to the body shape, the critical ve- 
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Land cover 
pokrovnost 

R, R„ 

Cliff faces - strma stena (60°-90°) 0.95 0.45 0.25 

Steep bare slope - strmo golo pobočje (40°-60°) 0.90 0.40 0.45 

Scree slope - gruščnato pobočje (30°-40°) 0.88 0.32 0.60 

Bare slope - golo pobočje (0°-30°) 0.87 0.35 0.50 

Meadow - travnik 0.87 0.30 0.55 

Alpine shrubs - alpsko grmovje 0.85 0.30 0.60 

Bushes - grmovje 0.83 0.30 0.65 

Forest (200 trees/ha) - gozd (200 dreves/ha) 
Up to/do 0.85 

Average/srednji 0.67 
0.28 1.00 

Forest (300 trees/ha) - gozd (300 dreves/ha) 
Up to/do 0.85 

Average/srednji 0.57 
0.28 1.50 

Forest (500 trees/ha) - gozd (500 dreves/ha) 
Up to/do 0.85 

Average/srednji 0.38 
0.28 2.00 

Forest (700 trees/ha) - gozd (700 dreves/ha) 
Up to/do 0.85 

Average/srednji 0.27 
0.28 2.20 

Table 2. The tangential R, and the normal coefflcient of restitution Rn and the coefflcient of friction fi for 
the different land-cover types (after Dorren & Seijmonsbergen, 2003). 

Tabela 2. Tangencialni R, in normalni Rn koeficient odboja ter koeficient trenja ju za različne pokrovnosti 
tal (povzeto po Dorren & Seijmonsbergen, 2003). 

n - number of sides 
- št. stranic prizme 

10 12 14 16 

P (°) - minimum slope angle 
required for the start of rolling 
- minimalni naklon pobočja, 
 da se prične drsenje  

45.0 30.0 22.5 18.0 15.0 12.9 11.2 

H = tan p (-) - minimum coefflcient 
of friction required for the start of 

rolling at slope angle p 
- minimalni koeficient trenja, 

da se prične drsenje pri naklonu p 

1.00 0.58 0.41 0.32 0.27 0.23 0.20 

e/L (%) - e = deviation of centre of 
gravity with respect to a straight 

course 
- razdalja težišča od ravne črte, ki 

povezuje potovanje težišča; 
L = side length of polygon 

- dolžina stranice prizme (if - če n 
—> oo: sphere - krogla and - in e = 0) 

20.7 13.4 9.9 7.9 6.6 5.6 4.9 

Table 3. Conditions for rolling of a regular polygonal prism (Erismann & Abele, 2001). 
Tabela 3. Pogoji kotaljenja pravilne poligonalne prizme (Erismann & Abele, 2001). 
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locity depends on its size: for geome- 
trically similar bodies it is proportional 
to the square root of the linear dimen- 
sions. 

The process of rolling becomes a more 
complex one, when there are more bodies 
involved. Field configuration also affects 
motion. When surfaces are very uneven high 
acceleration of the body occurs as well as 
rotating motion. In this way, the rebound 
may cause rotation. 

To define the velocity of rolling we must 
first have a look at the energy equation: 

f -f +f -m'v \I'0>~ ^kin ^trans ^rot (32) 

where m is the weight of the released mass 
[kg], v is the velocity [m/s], I is the moment 
of inertia and a is the angular velocity [s-1]. 

v = a>r (33) 

I = k2 - m (34) 

1 + - (35) 

Spherical blocks show a minor loss of 
energy and have the greatest runout. For 
this »worst čase scenario« the equations can 
be written as follows (Figure 6): 

k2 = 2-r2 

5 
(36) 

7 ■ m ■ v* 
“15 

(37) 

The energy in point A at the start of mo- 
tion is given as: 

Fn 

m a 

Dab 

Fig. 6. Rolling spherical rock on a slope with 
gradient p (F, translational force, Fn normal 

force). 
Slika 6. Kotaleča okrogla skala na pobočju 

z naklonom p (F, translacijska sila, Fn normalna 
sila). 

Epo,+Eti„ = m-g-hAB + 1 (38) 

The energy in point B at the end of the 
slope is given as: 

Eti„ + E,r = 7 ™q
Vb + Ur ■ m-g-conPAB ■ SAB (39) 

After equalisation of both equations we 
obtain the velocity in the point B: 

VB = Jv^+Y'S\hAB -Fr ■ Dab) (40) 

If we compare the translational for- 
ce in the point B in sliding and rolling (at 
Fr =/ug =0 ), it becomes clear that the trans- 
lational force in rolling is smaller by 15 % 
than the one in sliding. 

Ftr friction force [N] 
E,r energy of friction [J] 
Fn normal force [N] 
Epol potential energy [J] 
Eklrt kinetic energy [J] 
vA velocity in point A [m/s] 
vB velocity in point B [m/s] 
m weight of released mass [kg] 
g earth gravity [m/s2] 
Fr friction coefficient in rolling [-] 
hAB difference in height between A and B 

[m] 
Dab horizontal distance between A and B 

[m] 
SAB slope distance between A and B [m] 

The friction coefficient in rolling /ur corre- 
sponds in motion of a spherical rock to the 
tangent of slope angle and thus to the tan- 
gent of friction angle of the rockfall mate- 
rial (Scheidegger, 1975). Size of largely 
depends on the following parameters (Boz- 
zolo, 1987; Chau et al., 2002): 

• Shape of a block: spherical blocks in- 
dicate smaller friction in rolling than 
sharp-edged bodies, which also stop 
sooner. Fiat, and rarely also prism-sha- 
ped blocks, often travel great distances 
if they move in similar way to a bicycle 
(Azzoni et al., 1991). 

• Relative roughness (relationship bet- 
ween block size and roughness height 
affecting the rolling block): the impact 
between a rolling block and talus scree 
does not significantly change velocity, 
if the block is sufficiently larger than 
the talus scree. When, however, the 
block is of similar dimensions as the 
talus scree, the impact bears significant 
effect on the block velocity. 
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• Mechanic slope characteristics: energy 
loss in rolling depends on whether ela- 
stic and/or plastic slope deformations 
occur. 

• Slope angle. 
The dynamic friction angle can be ex- 

pressed as (Kirkby & Statham, 1975; 
Statham, 1976; after Meifil, 1998): 

tan^ =tan«)0+A:—, (41) 

where is the friction angle (°), k is the 
shape coefficient (between 0.17 and 0.26), 
d is the median diameter of rocks on the slo- 
pe (m) and R is the diameter of the falling 
block (m). 

Energy losses in rolling are mainly smal- 
ler than in sliding and falling. Rolling blocks 
usually reach the longest runout. However, 
since the rolling blocks are not perfect sphe- 
res and the surface is not perfectly even, rol- 
ling rarely occurs. Usually, there is a com- 
bination of rolling and bouncing. This is 
probably the most complex way of motion 
of rock mass and it represents the greatest 
danger from the dynamic point of view. This 
way of motion enables the block to collect a 
lot of energy and the resulting trajectory of 
motion is extremely hard to define. 

Sliding and runout 

Sliding is the next mechanism of motion 
to be discussed, which occurs only in initial 
and final phases of motion. If the slope gra- 
dient increases, the sliding rock starts fal- 
ling, rolling or bouncing (Bozzolo, 1987). 
If along sliding pathway the slope gradient 
does not change, the motion, due to energy 
loss, usually stops. The equations describing 
sliding are firstly used at the start of moti- 
on when the body has potential and kinetic 
energy (as also shown on Figure 6 for rol- 
ling): 

Epol+Eki„ = m-g-hAB+^ (42) 

After Coulomb’s Law the friction force is 
written as: 

F,r=Rg
F„=Rxm-g-zosPAB (43) 

and energy as: 
E,r = F,r ■ SAB = ' S ' C°S PAB ' S AB (44) 

When the body reaches point B, it has the 
following energy: 

Fa, + E,r = + fJg ' m' g' cos PAB ■ SM (45) 

After the law of conservation of energy, 
the energy in point A and point B can be 
equalized, and we obtain the velocity in po- 
int B: 

vb = ^va + 2 ■ g ■ (hAB -ng- DAB) (46) 

If the following condition is fulfilled: 
v\<2-g\^-DAB-hAB), (47) 

the body stops. The horizontal distance can 
be written as: 

Ds« = 2g(/Jg -isPab) 
(48) 

Ftr friction force [N] 
Fn normal force [N] 
Epot potential energy [J] 
Ekin kinetic energy [J] 
Etr energy of friction [J] 
vA velocity in point A [m/s] 
vB velocity in point B [m/s] 
m weight of released mass [kg] 
/ug friction coefficient [-] 
hAB difference in height between A and B 

[m] 
Dab horizontal distance between A and B 

[m] 
SAB slope distance between A and B [m] 
PAB slope gradient between A and B [rad] 

During sliding the body is in constant 
contact with the ground. The sliding occurs 
only if the friction coefficient is smaller than 
the tangent of the slope angle. In order for 
a rock to travel the distance from point A 
to point B, the condition must be met that 
the velocity component runs parallel to the 
following segment: 

(49) 

A sliding body can in a specific segment: 

• stop by itself; 
• slide to the end of the segment; 
• or the sliding changes into rolling. 

In order for a body to stop, the kinetic 
energy must equal 0. For the transition from 
the sliding phase into the rolling phase, the 
kinetic energy must be larger than the po- 
tential energy mgAh, where A h is the vertical 
drop of the centre of gravity of the body: 
Eu« ^ n'g^h ■ 

Two blocks sliding next to each other must 
overcome twice as much friction than one 
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block only. In this particular example, it can 
be maintained, in relation to the Coulomb’s 
Law, that the total friction remains the same 
if two blocks move so that one is on top of 
the other, instead of being next to each other. 
In order to assume that this postulate is trne, 
there must exist similar conditions related 
to friction. The basic idea of explanation for 
technical materials is that no surface can be 
perfectly even. More pressure first means more 
and larger removed fragments and not higher 
stresses. The factor of proportionality n can 
be determined as a function of shear stress 
and hardness (Bowden & Tabor, 1964). 
Deformational changes of the material mic- 
rostructure close to its surface occur, resulting 
in the instability of the material to the local 
shear forces (Spang, 1987). This causes the 
particles of the deformed material to move, 
which results in the production of crushed or 
ground ultrafine material. When compression 
stresses exceed the resistance of the material, 
crushing locally destroys rock asperities and 
crushed fragments are partly pushed aside. 
The geometries of the two surfaces in contact 
correspond better to each other. 

The Coulomb’s rule provides useful basis 
for a quantitative approach to sliding (Bow- 
den & Tabor, 1964; Rigney et al., 1984): 

• sliding between two blocks usually oc- 
curs at the contact surface composed 
of an abundance of fragments, which 
constantly adapt to the crushing (and 
relative transport) and compression 
under almost critical pressure; 

• reasonably accurate calculations of 
energy losses with the mechanisms 
mentioned above are not possible, sin- 
ce we do not have the knowledge on the 
relevant parameters; 

• energy loss in crushing is independent 
of velocity; 

• energy losses in accelerated crushing are 
proportional to the velocity squared. 

At the initial stage, the rockfall mass has 
potential energy that changes into: 

• kinetic energy; 
• internal energy (energy due to fricti- 

on); 
• energy for internal crushing of mass. 

Between the moving rockfall mass and 
slope surface, energy loss occurs due to: 

• friction; 
• plastic deformations of the contact 

zone; 

• non-plastic components during the fal- 
ling stage. 

The rock stops when the kinetic energy 
equals zero. This occurs during constant loss 
of energy or due to the total transfer of ener- 
gy to the obstacle (Spang, 1987). 

In comparison to other types of motion, in 
free fall occurs a total transfer of potential 
energy into kinetic energy and thus to high 
velocities. In long fall trajectories, however, 
the efffect of air friction cannot be neglected. 
As a rule, the kinetic energy changes from 
rolling to bouncing and sliding (Figure 7). 

Lubrication 

Lubrication is a technical (tribological) 
term describing the reduction of frictional 
resistance by a third medium (called lubri- 
cant) between two separate surfaces in rela- 
tive motion to each other. The lubricant can 
be a liquid (e.g. water or oil), a solid matter 
(e.g. graphite) or a gas (e.g. air). It may be 
present due to its own coherence (oil) or the 
hydraulic pressure. Hypothetic possibilities 
of lubrication in rock motion are as versa- 
tile as in its technical uses. The four major 
groups of mechanisms depending on the 
type of the third medium (water, snow, ice, 
mud, clay, dust etc.) can be divided into four 
classic governing elements that were defined 
already by Empedocles (after Erismann & 
Abele, 2001); »water« (for fluids); »air« (for 
gases); »fire« (for heat); and »earth« (for so- 
lid matter). 

The key word that is used most often in 
relation to motion of a rock mass down-slo- 
pe is »water«. Up until now, water has al- 
ways been considered as a destructive force. 
The significant characteristic of water is its 
low viscosity. Low viscosity means that it 
will leave almost unhindered relative moti- 
on of the in vol ved bodies, however, it will 
flow away very quickly under overload, if it 
is not present in sufficient quantity. When 
water should take the role of a lubricant in 
rockslides, one must understand under what 
conditions can water take on the overload 
during periods of time long enough to con- 
tribute to the efective coefficient of friction. 

The volume of potentially available li- 
quid (pore water or fluid mud) is limited by 
the pore volume between the large particles 
of the fill. In the first assumption, if particles 
may be taken as equal in size and spherical, 
the pore volume is around 26 % of the total 
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Etrans 

Fig. 7. Distribution of energy at different 
forms of motion of a rock mass (MeiBl, 

1998). 
Slika 7. Energijske razmere pri različnih 

oblikah gibanja skalne mase (MeiBl, 1998). 

Enot 
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volume of the fi.ll. In reality, the pore volume 
is some percent of the total volume of the 
fill (the lubricant layer can be several me- 
tres thick). There is a question of the actual 
availability of the lubricant under the com- 
pression of the sliding mass. In the sliding 
mass, the filling material moves downwards, 
which is the result of elastic deformation, 
disintegration, redistribution of particles or 
a combination of these mechanisms. 

Fluidization 

The main difference between lubrication 
and fluidization is in the location of the go- 
verning mechanism achieving a reduction of 
resistance. In the čase of lubrication, the mec- 
hanism is concentrated close to the boundary 
between the moving mass and the ground. In 
fluidization the mechanism is active in a much 
larger part, normally in the entire thickness 
of the moving mass. The geomorphological 
consequences of these differences are clear. 
In motion of a fluidized mass, relative dis- 
placements will occur in its entire volume. 
Lubrication, on the other hand, causes only 
moderate relative displacements between the 
parts of the disintegrated mass, however, the 
mass retains its »shape«. This is important in 

order to exclude the suspicion that fluidiza- 
tion of rockslides often occurs during their 
motion downslope. In some cases, fluidiza- 
tion can be considered as multi-layered lu- 
brication, with layers parallel to each other 
and to the ground. Most commonly in rocks- 
lides, the fluidization occurs with water. 

Let us imagine a multi-layered mass with 
interchanging layers of water and rock (Fi- 
gure 8). The thickness of water layer is ew, 
the thickness of rock layer er and the respec- 
tive densities are 8W and 8r. First, let us as- 
sume the negligible rugosity of impermea- 
ble rock layers (roughness height is small as 
compared to the thickness of water layer). 
In turn, the layer thickness ew and er is small 
compared to the entire thickness of mass H, 
so that the sliding mass can be described as 
a Newtonian fluid with averaged density: 

- 8er + 8 ,e„ g = _!_L 2L_»L 
er +ew 

and averaged viscosity: 

(50) 

E = E„. (51) 

where Ew= 0.00134kgnr1s_1 is the viscosity of 
water. This highly simplifies the quantitati- 
ve treatment. 
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C\\ 

f(li H )=h H - 0, ? (h/H) 

a) 

dh H 

i(h.H) 

Fig. 8. Fluidisation by water (Erismann & Abele, 2001): 
a) Simplified model of a water saturated layer, where er is the thickness of the impermeable rock layer 

and ew is the thickness of the water layer, respectively; 
b) Homogenous viscous layer of depth H (see also eqs. (52) and (53)); 
c) Velocity distribution valid for ali mass having a constant viscosity. 

Slika 8. Utekočinjenje z vodo (Erismann & Abele, 2001): 
a) Poenostavljen model z vodo saturirane plasti, kjer je er debelina plasti neprepustne kamnine in ew debelina plasti vode; 

b) Homogena viskozna plast debeline H (glej tudi enačbi (52) in (53)); 
c) Porazdelitev hitrosti, ki velja za vse mase, ki imajo konstantno viskoznost. 

For motion at constant velocity, the shear 
stress at the level h can be expressed by the 
gravitational acceleration g and viscosity E: 

(H - h)gds'm J3 = s = E— (52) 
dh 

P is the slope angle and u is the velocity 
at level h. The differential equation can be 
solved and we obtain: 

« = / 
h 

77 
gH^sinp, 

t 
(53) 

where i(h/H)=h/H-0.5(h/H)2 is the dimensi- 
onless parameter. The maximum velocity at 
the surface of the siding mass is obtained at 
f(7i/H)=l/2. 

If we consider a mass with a finite breadth 
B (this is not necessarily the total width of 
the mass, since the mass may have longitu- 
dinal cracks), the water may escape from the 
mass. The water layers thus narrow down, 
and the resistance increases. The follovving 
equation describes the laminar flow of the 
escaping water: 

dew / dt _ 2 
ew ~3 

_P_ 
E 

(54) 

On the left hand-side of equation (54) is 
the velocity that causes the water layer to 
narrow down (expressed as the relative loss 
in layer thickness per time unit), and on the 
right hand-side of equation (54) there is a 
term related to the geometry and the relati- 
onship betvveen the driving force (pressure 
p) and the braking force (viscosity Ew). 

When fluidization is suspected, the follo- 
wing checklist of five points is used to check 
this possibility: 

• general behaviour of the disintegrated 
mass saturated with water; as long as 
flow is laminar and the mass is capable 
of retaining water, the behavior is like 
that of a viscous liquid (equation (53)). 

• In such cases it is necessary that the ve- 
locity increases from the bottom to the 
top of the mass. The main consequence 
of the mass with a finite length is the 
reverse order of elements and fast loss 
of layer thickness. 

• A strong effect of size is given by the 
thickness H squared (equation (53)). 

• Based on equations (54) and (55) the 
relative loss of water (and increase of 
effective viscosity) is slower with lar- 
ger mass than smaller mass. 
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• The absolute extension of transition of 
width ew exerts the critical influence on 
the duration of functional life. 

Conclusions 

A detailed description of motion of rock 
mass downslope is mathematically deman- 
ding, and the knowledge of the motion mec- 
hanisms is essential. These mostly depend on 
slope angle and slope characteristics as well 
as rock characteristics in the release area, 
thereby also the characteristics and volume 
of rock mass in motion. Only good know- 
ledge of the terrain can enable the selection 
of a proper mathematical description of the 
motion, which must be based on simplified 
premises. A potential field investigation of 
the motion of rock mass is time-consuming, 
difficult and costly. Most often, empirically 
acquired values of coefficients from field ob- 
servations of rockfall and rockslide motion 
or measurements of their deposits are built 
into mathematical models. 

The paper shows the prevailing ways of 
rock mass motion and for each way a corre- 
sponding mathematical description is given. 
The review is intended for a better under- 
standing of kinematics and dynamics of the- 
se dangerous phenomena and should serve 
as a decision-support tool when deciding, 
whether in a particular čase of establishing 
hazard areas the simplified empirical models 
of rockfall runout should be used (review gi- 
ven in Petje et al., 2005a), or whether it is 
necessary to use physically more accurate 
models with several parameters discussed 
in this paper, which are used in Computer 
simulations of rock mass motion (review gi- 
ven in Petje et al., 2005b). 
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