The Paleocene-Eocene boundary in a flysch sequence from Goriška Brda (Western Slovenia): Oxygen and carbon stable isotope variations

Paleocensko-eocenska meja v flišu Goriških Brd (zahodna Slovenija): variabilnost izotopske sestave kisika in ogljika

Tadej DOLENEC,1, 2 Jernej PAVŠIČ,1 & Sonja LOJEN2
1 Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva 12, 1000 Ljubljana, Slovenia
2 Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

Key words: P/E boundary, Nozno, Goriška Brda, flysch, oxygen and carbon stable isotopes

Ključne besede: meja P/E, Nozno, Goriška Brda, fliš, stabilni izotopi kisika in ogljika

Abstract

Stable (δ^{13}C$_{\text{carb}}$, δ^{13}C$_{\text{org}}$, δ^{18}O) isotopic records were studied to elucidate the problem of the Paleocene/Eocene (P/E) boundary in a flysch sequence at Nozno in Goriška Brda, W. Slovenia. A remarkable disturbance in organic carbon as well as in carbonate C and O isotopic records and associated Ir anomalies provide strong evidence that something unusual happened at the time of the Paleocene-Eocene transition. The diverse character of the negative excursion of δ^{13}C of carbonate and sedimentary organic carbon indicates a significant perturbation in the global carbon cycle and climatic changes, most probably controlled by a combination of volcanic activity and fluctuations in bioproduction. The corresponding δ^{18}O variability may be related to global warming due to a higher greenhouse effect and/or diagenetic alteration.

Kratka vsebina

Z namenom, da razjasnim problematiko paleocensko-eocenske meje v flišu Goriških Brd, smo raziskali potek krivulj δ^{13}C$_{\text{carb}}$, δ^{13}C$_{\text{org}}$ in δ^{18}O v mejni flišni sekvenči na območju Nozna. Izrazite motnje v izotopskem zapisu vseh treh parametrov, ki sovpadajo z Ir anomalijami kažejo, da je prišlo na prehod v paleocena in eocena do nesreč dogodkov. Večkratna negativna anomalija za karbonatni ogljik in ogljik iz sedimentirane organske snovi Najverjetneje odražali globalne spremembe v ogljikovem ciklusu in klimatske spremembe. Te so najverjetneje posledica vulkanske dejavnosti in kolebanja v bioprodukciji. Variabilnost parametra δ^{18}O pa je lahko povezana z globalno otopljitvijo, zaradi povečanega vpliva efekta tople grede, deloma pa tudi z diagenetskimi spremembami.

Introduction

The transition from Paleocene to Eocene was a time of global climatic, oceanographic and biotic changes resulting in one of the largest calcareous deep benthic foraminiferal extinction events in the last 100 million years (Kennett & Stott, 1991; Pak & Miller, 1992; Charisi & Schmitz, 1995; Schmitz et al., 1996). This signi-
ficant short-term event, which is placed in
the latest Paleocene between 57.5 and 58
m.y. (Corfield, 1994), coincides with
distinct negative δ¹³C and δ¹⁸O anomalies,
recorded in several marine and terrestrial
sections all over the world (Corfield, 1994;
Canudo et al., 1995; Bralower et al., 1995;
Koch et al., 1995; Charisi & Schmitz, 1995;
Lu et al., 1996), as well as in geochemical changes (Schmitz, 1996; Thompson & Schmitz, 1996;
Schmitz et al., 1997). Furthermore,
 Ir anomalies have also been recorded
(Schmitz, 1996; Dolenec et al. 1998;
Dolenec et al., 2000). A pronounced negative (13C and (18O excursion indicates ma-
jor changes in the structure of the deep wa-
ter circulation system and biological pro-
ductivity, and is probably related to a tran-
sient climatic anomaly also named »The Late Paleocene Thermal Maximum« (Zachos et al., 1993). It remains unclear what triggered such a sudden temperature rise
near the Paleocene/Eocene (P/E) transition.
However, several authors proposed that an
increase in atmospheric pCO₂ due to the ad-
dition of isotopically light CO₂ from
seafloor volcanic activity and/or terrestrial
sources (Roberts et al., 1984; Owen & Rea, 1985; Rea et al., 1990; Thomas, 1991),
together with outgassing of marine
CO₂ due to reduced surface water produc-
tivity, would account for the temperature rise from the late Paleocene into the early
Eocene (Corfield, 1994).
The present study was initiated to deter-
mine whether there were any systematic
changes in the stable isotope composition of
carbonate carbon and oxygen and organic
carbon during the P/E boundary transition
related to the global events considered. For
these purpose the carbonate and sedimen-
tary organic carbon isotopic composition were
measured in a flysch sequence from Goriška
Brd a. (Nozno section) in Western Slovenia,
in the hope that such a study would provide

Fig. 1. Map showing location of studied region in Goriška Brda.
further information necessary to elucidate the cause of the isotopic anomalies across the P/E transition.

Geological setting and biostratigraphy

On the Dinaric carbonate platform of the western Tethys sea, flysch sedimentation started in the Paleocene and continued up to the Middle Eocene (Buser & Pavšič, 1978). A well-exposed, non-tectonized P/E sedimentary boundary sequence was found only in Goriška Brda (W. Slovenia, Fig. 1). The lower part of the studied section represents 30 m thick unit of the uppermost Paleocene biozone NP9, mostly composed of clayey marls alternating with sandstones. The Upper Paleocene age of these beds is indicated by calcareous nanoplankton assemblages (Pavšič & Dolenc, 1995). This sedimentary sequence is overlain by a 3 m thick limestone breccia unit followed by an up to 11.8 m thick succession of sandstones containing only re-deposited alveolinids and discocyclinids from older Paleocene beds. The first Eocene plankton species _Rhomboaster bramlettei_, indicating the biozone NP 10, was found in the upper part of the first marl layer overlaying the sandstone. It is followed by a 4 m thick normal flysch sequence predominantly composed of marls and sandstones. Based on the lithology and micropaleontological investigations, the P/E boundary is placed arbitrarily at the base of the limestone breccia unit (Pavšič, 1997).

Materials and methods

The boundary profile in the flysch succession was systematically sampled in order to determine all the details of the P/E stable isotope anomalies. The relative stratigraphic position of the samples and isotopic results are presented in Fig. 2. Geochemical analyses were carried out at the Activation Laboratories, Ontario. The isotopic measurements were performed at the Jožef Stefan Institute, Ljubljana, Slovenia. Whole rock samples for δ¹³C and δ¹⁸O analyses of carbonate were prepared by overnight digestion in > 100 % phosphoric acid at 50 °C.

Fig. 2. Stable isotope composition of carbonates (δ¹³O, δ¹³C_carb.), organic carbon (δ¹²C_org.) and isotope fractionation between carbonate and organic carbon (Δδ¹³C_carb.-org.) across the Paleocene-Eocene boundary at Nozno in Goriška Brda, W. Slovenia (O Ir anomaly).
CO₂ released during acid treatment was cryogenically cleaned and analyzed using on a Varian MAT-250 mass spectrometer. Organic carbon isotope ratios were determined in the carbonate-free residues in an Europa 20-20 Stable Isotope Analyser (Europa Scientific LTD.) with an ANCA-NT preparation module for on-line combustion of bulk solid samples and chromatographic separation of the gases. All δ¹³C and δ¹⁸O values are expressed in standard permil (%) notation relative to the PDB standard. The analytical precision, based on multiple analysis of internal laboratory standards, was ± 0.01 ‰ for δ¹³C_carb. and δ¹³C Org. and ± 0.09 ‰ for δ¹⁸O. Overall analytical reproducibility of the isotope data was better than (0.1 ‰ for δ¹³C_carb., δ¹³C Org., and for δ¹⁸O.

Using petrographic and trace element abundance data (unpublished), we evaluated known diagenetic effects that may affect the oxygen and carbon isotopic composition in our studied samples and concluded that the δ¹³C values reported here are predominantly primary. The oxygen isotopic composition of the whole rock samples is lower than those recorded from most coeval marine sections worldwide, most probably indicating diagenetic alteration. However, the low negative correlation (r = -0.46) between δ¹³C_carb. and δ¹³C Org. (r = -0.46) indicates that the carbon isotopic composition of the whole rock was partially modified by the oxidation of organic matter. Although the post-depositional processes more or less altered the original oxygen and carbon isotopic composition, we believe that the primary paleoceanographic signals were not completely overprinted. This assumption is supported by similar trends of δ¹³C_carb. and δ¹⁸O values in whole rock and foraminiferal samples of P/E boundary sections from Egypt (Charisi & Schmitz, 1995; Schmitz et al., 1996) and Spain (Lu et al., 1996).

Results and discussion

The short term event recorded in the P/E boundary flysch sequence of the Goriška Brda section is characterized by complex characters of isotopic anomalies which roughly span the interval between 0 and -5 m. There are four distinct isotopic (δ¹³C_carb., δ¹³C Org. and δ¹⁸O) minima at -0.25, -1.3, -2.5 and -4 m which demonstrate a clear perturbation in both δ¹³C_carb. and δ¹⁸O records of the whole rock samples, as well as in δ¹³C of organic carbon (Fig. 2). The Ir anomalies (Dolecn et al., 2000) at -4 m (0.1 ppb), -2.5 m (2.3 ppb) and -1.3 m (0.6 ppb) are coincidental with isotopic anomalies, while that at -2.95 m (0.3 ppb) appears after the first negative δ¹⁸O and δ¹³C shift. The possible link between isotopic and Ir anomalies is not yet well understood. The possibility of an impact triggering a P/E biotic crisis and isotopic and Ir anomalies is too speculative. No clear impact signatures have been found in the studied section or in any other P/E section worldwide. A significant decrease of δ¹³C_carb. from +1.80 to -4.87 (and a negative δ¹⁸O shift from -2.2 to -6.0 (in the whole rock samples) is most probably related to a rapid short-term carbon and oxygen isotope excursion associated with the benthic extinction event which occurred close to the NP9/10 and P6a/P6b zone boundaries, within the latest Paleocene, as documented on a global scale (Bralower et al., 1995; Lu et al., 1996).

The corresponding organic carbon δ¹³C Org. isotope curve is slightly different with respect to those of δ¹³C_carb. and δ¹⁸O, showing a gradual increase in δ¹³C values from -25.82 to -24.13 ‰, starting in the upper part of the late Paleocene and lasting through the lower part of the early Eocene. Superimposed on this long term trend is a short-term perturbation of δ¹³C Org. values coinciding with the negative shift in δ¹³C_carb. and δ¹⁸O, thus indicating some changes in bioproducitivity. The δ¹³C Org. curve also exhibits four isotopic minima. The first one at -5 m appears before the first negative δ¹³C_carb. and δ¹⁸O excursion, while the last three are coeval with those of δ¹³C_carb. and δ¹⁸O. Hollander et al., (1993) have shown that a decrease in δ¹³C Org. and a subsequent increase in Δδ¹³C Carbo.-org. could signify a “Strangelove Ocean” where in dissolved CO₂ was enriched in ¹³C because of reduced plankton production, while increasing δ¹³C Org. and decreasing Δδ¹³C Carbo.-org. values are consistent with increased oceanic productivity. The diverse
character of the Δ^{13}C_carb-org. and δ^{13}C_org. anomalies in the boundary sequence could be related to the fluctuations of primary productivity which would tend to destabilize the global climate and possibly caused significant perturbations in atmospheric CO2.

The short term disturbances in δ^{13}C_carb. and δ^{13}C_org. records in the topmost part of the biozone NP9 can be explained by perturbations in atmospheric pCO2 levels and/or climatic changes, most probably controlled by a combination of increased sea-floor spreading, volcanic activity (Owen & Rea, 1985; Sloan et al., 1992; Dickens et al., 1995) and fluctuating bioproductivity. The corresponding δ^{18}O variability may be related to global warming due to the higher level of greenhouse gases in the atmosphere and/or diagenetic alteration.

Conclusions

The transition from Paleocene to Eocene is characterized by a complex character of isotopic anomalies which demonstrate that something unusual happened at the P/E boundary. Their origin is unclear, but a combination of increased volcanic activity and fluctuating bioproductivity seems to be responsible for a sudden increase of atmospheric pCO2, temperature rise and biotic crisis. However, the discovery of an Ir anomaly which is associated with perturbations in isotopic (Δ^{13}C_carb., δ^{13}C_org. and δ^{18}O) records may also suggest a link between volcanic processes and/or the highly speculative possibility of extraterrestrial dust contamination. However, our results are inconclusive and further more detailed and complex geochemical studies are required to resolve this problem.

Acknowledgements

This study was financially supported by the Ministry of Science and Technology, Republic of Slovenia, and Geoexp d.o.o. Tržič, Slovenia. To both these institutions we express our sincere thanks.

References

Charisi, S. D. & Schmidt, B. 1995: Stable δ^{18}O, δ^{13}C and strontium (87Sr/86Sr) isotopes through the Paleocene et Gebele Arewea, eastern Tethyan region. - Palaeogeography, Palaeoclimatology, Palaeoecology, 116, 103-129.

Lu, G., Keller, G., Adatte, T., Ortiz, N. & Molina, E. 1996: Long-term (109) or short-term (109) δ^{13}C excursion near the Paleocene-Eocene transition: evidence from the Tethys. - Terra Nova, 8, 347 - 355.

and assemblages: Implications for deep water circulation. - Paleocenography, 7, 405 - 422.

Schmitz, B. 1996: The Latest Paleocene extinction event in the Middle East, Northern Spain and Italy. In: Early Paleogene Stage Boundaries, International meeting and field conference in Zaragoza, Spain. Abstract and Field Trip Guides, pp. 46.

Schmitz, B., Charisi, S. D., Thompson, E. I. & Speijer, R. P. 1997: Barium, SiO₂ (excess), and P₂O₅ as proxies of biological productivity in the Middle East during the Palaeocene and the Latest Palaeocene benthic extinction event. - Terra Nova, 9, 95 - 99.

